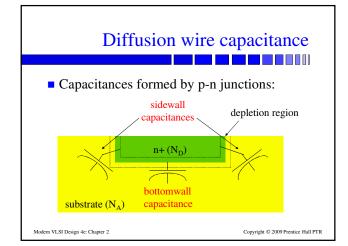
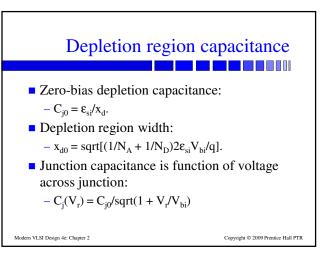


- Current-carrying capacity of metal wire depends on cross-section. Height is fixed, so width determines current limit.
- Metal migration: when current is too high, electron flow pushes around metal grains. Higher resistance increases metal migration, leading to destruction of wire.

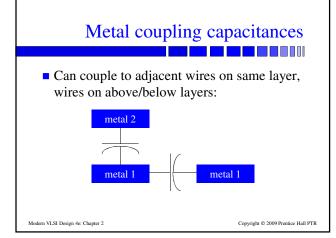
Modern VLSI Design 4e: Chapter 2

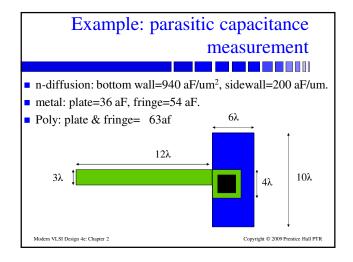
Copyright © 2009 Prentice Hall PTR

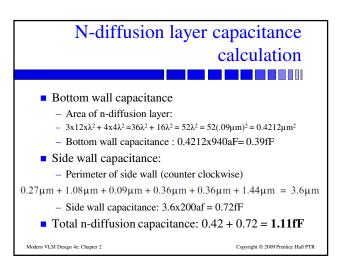

Metal migration problems and solutions

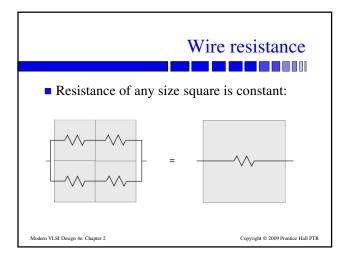

- Marginal wires will fail after a small operating period infant mortality.
 - » Under high currents, electron collisions with metal grains cause the metal to move; this process is called metal migration (also known as electromigration)

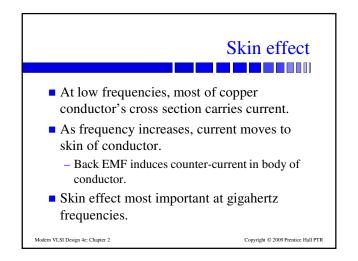
Copyright © 2009 Prentice Hall PTR

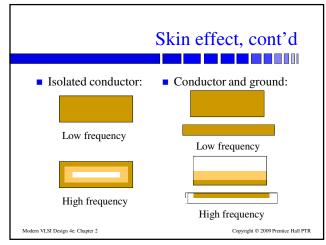

- Normal wires must be sized to accomodate maximum current flow:
 - $I_{max} = 1.5 \text{ mA}/\mu\text{m}$ of metal width.
- Mainly applies to V_{DD}/V_{SS} lines.

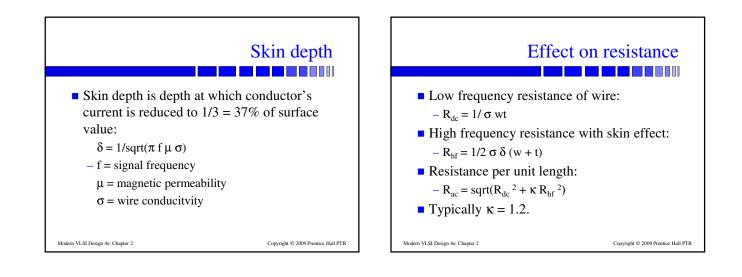

Modern VLSI Design 4e: Chapter 2











			process.		
p-type transconductance	k'p	-30µA/V ²	poly resistivity	R _{poly}	8Ω/□
n-type threshold voltage	V _{tn}	0.5V	metal 1-substrate plate capacitance	Cmetal1,plate	36 <i>a</i> F/µm ²
p-type threshold voltage	V _{tp}	-0.5V	metal 1-substrate fringe capacitance	Cmetal1,fringe	54 <i>a</i> F/µm
n-diffusion bottomwall capacitance	Cndiff,bot	940 <i>a</i> F/µm ²	metal 2-substrate capacitance	Cmetal2,plate	36 <i>a</i> F/µm ²
n-diffusion sidewall capacitance	C _{ndiff,side}	200 <i>a</i> F/µm	metal 2-substrate fringe capacitance	Cmetal2.fringe	51 <i>a</i> F/µm
p-diffusion bottomwall capacitance	C _{pdiff,bot}	1000 <i>a</i> F/µm ²	metal 3-substrate capacitance	C _{metal3,plate}	37 <i>a</i> F/µm ²
p-diffusion sidewall capacitance	C _{pdiff,side}	200 <i>a</i> F/µm	metal 3-substrate fringe capacitance	Cmetal3,fringe	54 <i>a</i> F/um
n-type source/drain resistivity	R _{ndiff}	$7\Omega/\Box$	metal 1 resistivity	R _{metal1}	0.08Ω/□
p-type source/drain resistivity	R _{pdiff}	7Ω/□	metal 2 resistivity	R _{metal2}	0.08Ω/□
poly-substrate plate capacitance	C _{poly,plate}	63 <i>a</i> F/µm ²	metal 3 resistivity	R _{metal3}	0.03Ω/□
poly-substrate fringe capacitance	C _{poly,fringe}	63 <i>a</i> F/µm	metal current limit	I _{m.max}	1mA/µm
			ire capacitance	,	lmA/μm

