
Department of Informa-on and Communica-on Engineering (ICE)
University of Rajshahi, Rajshahi-6205, Bangladesh

ICE-2231
(Data Structures and Algorithms)

Lecture on
Chapter-3: Stacks, Queues, Recursion

By

Dr. M. Golam Rashed
(golamrashed@ru.ac.bd)

1

STACKS: Introduc0on

2

Ø A stack is a linear structure in which items may be added or removed
only at one ends

Ø Stacks are also called Last-in-First-out (LIFO) list.

Ø Other names:

v Piles

v Push-down lists.
Ø Although the stack may be a very restricted type of data structure, it

has many important applica0ons in computer science.
ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

STACKS: Dealing Postponed Decisions

3

Stacks are frequently used to indicate the order of the
processing of data when certain steps of the
processing must be postponed until other conditions
are fulfilled.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

STACKS: Special Terminology

4

Special terminology is used for two basic opera<ons associated with

stacks:

(a) “Push”-used to insert an element into a stack

(b) “Pop”-used to delete an element from a stack.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

5

STACKS: Push Example
Suppose the following 6 elements are pushed, in order, onto an empty
stack:

AAA, BBB, CCC, DDD, EEE, FFF

Diagram of Stack
ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

STACKS: Array Representation

6

Ø Stack may be represented in the computer in various ways,

ü usually by means of a one-way list, or

ü A linear array

Ø Usually Stacks will be maintained by…...

o A linear array, STACK,(main lists)

o A pointer variable, TOP, (contains the locations of the top

element of the stack)

o A variable MAXSTK, (gives the maximum number of

elements that can be held by the stack)

The condi<on TOP=0 or TOP=NULL of a STACK indicates…..?

EMPTY ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

7

STACKS: Array Representation Example

Present Status: TOP=3;
MAXSTK=8;
There is room for 5 more items in the stack

Future ImplementaFon:
Pushing an item onto a stack
Popping an item from a stack

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

STACKS: Pushing Algorithm

8

PUSH (STACK, TOP, MAXSTK, ITEM)
Step 1. [Stack already filled?]

If TOP=MAXSTK, then print: OVERFLOW, and Return.

Step 2. Set TOP=TOP+1. [Increase TOP by 1.]

Step 3. Set STACK[TOP]:=ITEM. [Insert ITEM in new TOP position]

Step 4. Return

1. Since TOP=3, go to Step 2

2. TOP=3+1=4

3. STACK [TOP]=STACK[4]= WWW

4. Return
ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

9

STACKS: Popping Algorithm
POP (STACK, TOP, ITEM)
Step 1. [Stack has an item to be removed?]

If TOP=0, then print: Underflow, and Return.

Step 2. Set ITEM= STACK[TOP] [Assign TOP element to ITEM.]

Step 3. Set TOP:= TOP-1. [Decreases TOP by 1]

Step 4. Return

1. Since TOP=3, go to Step 2

2. ITEM=ZZZ.

3. TOP=3-1=2.

4. Return.
ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

STACKS:

10

ü TOP is changed before the inser8on in PUSH, whereas

ü TOP is changed a>er the dele8on in POP

POP
1. Since TOP=3, go to Step 2

2. ITEM=ZZZ.

3. TOP=3-1=2.

4. Return.

PUSH
1. Since TOP=3, go to Step 2

2. TOP=3+1=4

3. STACK [TOP]=STACK[4]= WWW

4. Return

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

STACKS: Arithme(c Expressions;

11

ü Let Q be an arithmetic expression involving constants and operation.

Q: 2 ↑3+5*2 ↑2-12/6, we have to find the value of Q

üQ may have different levels of precedence in its binary operations.

üWe assume the following three levels of precedence for the usual

FIVE binary operations.

Ø Highest: Exponential (↑)

Ø Next Highest: Multiplication (*) and division(/)
Ø Lowest: Addition (+) and Subtraction(-)

ü Thus, we obtain after exponentiations (8+5*4-12/6)

ü After, multiplication and division (8+20-2)

ü After. Addition and subtraction , 26
ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

12

STACKS: Polish Notation
For most common arithme6c opera6ons:

A+B, C-D, E*F, G/H (infix nota)on)

Polish nota*on refers to the nota6on in which the operator symbol is

placed before its two operands.

For example: +AB, -CD, *EF, /GH

(A+B)*C = ?
= [+AB]*C=?
= *+ABC

Instant Exercise: (Infix expression to polish nota*on)

A+(B*C) = ?
= A+[*BC]=?
= +A*BC

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

13

STACKS: Polish Nota+on

(A+B)/(C-D) = ?
= [+AB]/[-CD] = ?
= /+AB-CD

ü The fundamental property of polish nota:on is that the
order in which the opera:ons are to be performed is
completely determined by

ü The posi:ons of the operators, and
ü Operands in the expression.

ü One never needs parentheses when wri+ng expressions
in polish nota+on.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

14

STACKS: Reverse Polish Nota/on
Reverse Polish Nota.on refers to the analogous nota6on in which the

operator symbol is placed a?er its two operands:

AB+, CD-, EF*, GH/
üThis nota6on is frequently called pos1ix nota.on

üOne never needs parentheses to determine the order of

the opera6ons in any arithme6c expression in pos1ix

nota.on

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

15

STACKS: Evalua&on of Pos-ix Expression
P: 5, 6, 2, +, *, 12, 4, /, -

Symbol
Scanned

STACK

(1) 5 5

(3) 2

(10))
(9) -
(8) /
(7) 4

(2) 6 5, 6
5, 6, 2

(4) + 5, 8
(5) * 40
(6) 12 40, 12

40, 12, 4
40, 3

37

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

16

STACKS:

1. Add a right parenthesis “)” at the end of P.
2. Scan P from left to right and repeat Steps 3 and 4 for

each of P until the “)” is encountered.
3. If an operand is encountered, put it on STACK
4. If an operator ⌘ is encountered, then:

a) Remove the two top elements of the STACK, where A
is the top element and B is the next-to-top element

b) Evaluate B ⌘ A
c) Place the result of (b) back on STACK.
[End of If structure]
[End of Step 2 loop]

5. Set VALUE equal to the TOP element on STACK.
Exit.

Algorithm to find the VALUE of an arithmeWc expression P
wriXen in posYix notaWon.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

STACKS: Transforming Q into P expression

17

Q: A + (B * C- (D / E ↑ F) * G) * H = (?) P expression
Symbol Scanned Stack Expression P

(1) A (A
(2) + (+ A

(3) ((+ (A

(4) B (+ (A B
(5) * (+ (* A B

(6) C (+ (* A B C

(7) - (+ (- A B C *

(8) ((+ (- (A B C *

(9) D (+ (- (A B C * D
(10) / (+ (- (/ A B C * D

(11) E (+ (- (/ A B C * D E
(12) ↑ (+ (- (/ ↑ A B C * D E

(13) F (+ (- (/ ↑ A B C * D E F

(14)) (+ (- A B C * D E F ↑ /

(15) * (+ (- * A B C * D E F ↑ /ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

STACKS: Transforming Q into P expression

18

Q: A + (B * C- (D / E ↑ F) * G) * H = (?) P expression
Symbol Scanned Stack Expression P

(7) - (+ (- A B C *

(8) ((+ (- (A B C *

(9) D (+ (- (A B C * D
(10) / (+ (- (/ A B C * D

(11) E (+ (- (/ A B C * D E
(12) ↑ (+ (- (/ ↑ A B C * D E

(+ (- (/ ↑ A B C * D E F

(14)) (+ (- A B C * D E F ↑ /

(15) * (+ (- * A B C * D E F ↑ /

(13) F

(16) G (+ (- * A B C * D E F ↑ / G

(17)) (+ A B C * D E F ↑ / * -

(18) * (+ * A B C * D E F ↑ / * -

(19) H (+ * A B C * D E F ↑ / * - H

(20)) A B C * D E F ↑ / * - H * +

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

19

Instant TEST
12 ,7 ,3 ,- ,/ ,2 ,1 ,5 ,+ ,* ,+

Result: 15

Equivalent infix expression ?
P = 12, [7-3], / , 2 ,1, 5, +, *, +

= [12/(7-3)], 2, 1, 5, +, *, +
= [12/(7-3)], 2, [1+5], *, +
= [12/(7-3)], [2* (1+5)], +
= 12/(7-3) + 2* (1+5)

Which Expression?
Postfix or Prefix

ü Postfix

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Instant TEST

20

Infix Prefix Postfix
A+B * C+D ++A*BCD ABC*+D+

(A+B) * (C+D) *+AB+CD AB*CD+*
A*B + C*D +*AB*CD AB*CD*+
A+B+C+D ++AB+CD AB+CD++

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Instant TEST
Infix Expression Prefix Expression Postfix Expression

-+-1^43*7^9/1521-4^3+7*(9^1/5)-2 143^-791^5/*+2-
+-+AB**C^DEXYA+B-(C*D^E)*X+Y AB+CDE^*X*-Y+

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

QUICKSORT: An Application of STACKS

22

• What is Sorting?
ü The operation of rearranging the elements of a list so that they

are in some logical order.
§ Numerically ordered (When list contain numerical data)
§ Alphabetically ordered (When list contains character data)

• Quicksort is an algorithm of the DIVIDE-AND-CONQUER type.
Ø The problem of sorting a set is reduced to the problem of sorting

two smaller sets.
• We illustrate this “Reduced Step” by means of a specific example
• Suppose A is the following list of 12 numbers.

44 33 11 55 77 90 40 60 99 22 88 66
A

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

23

Reduc(on Step of the Quicksort Algorithm

44 33 11 55 77 90 40 60 99 22 88 66
A

• The reduc(on step of the quicksort algorithm finds the

final posi(on of one of the numbers.

• In this illustra(on, we use the first number 44.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

STACKS: Quicksort/ Reduc5on Step

24

44 33 11 55 77 90 40 60 99 22 88 66

ü Beginning with the last number, 66, scan the list from right to left till less than 44.
ü Interchange 44 and 22

ü Beginning with, 22 , scan left to right till greater than 44
ü Interchange 44 and 55

ü Beginning with, 55, scan the list from right to left till less than 44.
ü Interchange 44 and 40

44 33 11 55 77 90 40 60 99 22 88 66

4433 11 55 77 90 40 60 9922 88 66

4433 11 5577 90 40 60 9922 88 66

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

STACKS: Quicksort/ Reduc5on Step

25

4433 11 5577 9040 60 9922 88 66

ü Beginning with, 40, scan le8 to right ;ll greater than 44
ü Interchange 44 and 77

ü Beginning with, 77, scan the list from right to le8 ;ll less than 44.
ü Do not meet such a number before mee;ng 44.

ü Thus, 44 is correctly placed in its final posi;on.
ü The task of sor;ng the original list A has now been reduced to the

task of sor;ng each of the above sublists.

4433 11 55779040 60 9922 88 66

4433 11 55779040 60 9922 88 66

First sublist Second sublist

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

STACKS: Quicksort/ Reduc5on Step

26

• The reduction step is repeated with each sublist containing 2 or
more elements.

• Since we can process one sublist at a time, we must be able to keep
track of some sublist for future processing.

• This is accomplished by using two STACKS
LOWER and UPPER

to temporarily hold such sub-lists.
• The addresses of the first and last elements of each sublist, called

its “BOUNDARY VALUES” , are pushed onto the STACKs LOWER and
UPPER, respectively.

• The reduction steps is applied to a sublist only after its BOUNDARY
VALUES are removed from the STACKs.

4433 11 55779040 60 9922 88 66

First sublist Second sublistICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

STACKS: Illustra(on of the way the STACKS LOWER and UPPER are used

27

27
44 33 11 55 77 90 40 60 99 22 88 66

A

N=12 elements,
Thus,

Boundary values are ()?
1 and 12.

Now,
1 and 12 should be Stacked

LOWER:1 and UPPER:12

• In order to apply the REDUCTION STEP, the algorithm first removes
the top values 1 and 12.

• A[er removing the top values 1 and 12 from the STACK, leaving
LOWER:(Empty) and UPPER: (Empty)

• Then Applies the REDUCTION STEP to the corresponding list A[1],
A[2],….,A[12]. ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

28

STACKS: Illustra(on of the way the STACKS LOWER and UPPER are used

• A)er execu0ng REDUCTION STEP to the list A[1] to A[12]
• Finally places the first element 44, in A[5].

• Accordingly, the algorithm pushes the boundary values
• 1 and 4 of the first sublist, and
• 6 and 12 of the second sublist on to the STACK to yield

LOWER= 1, 6 and UPPER= 4, 12

• In order to apply the REDUCTION STEP again, the algorithm removes
the TOP values 6 and 12 from the STACKs, leaving

LOWER= 1, and UPPER= 4

28

4433 11 55779040 60 9922 88 66

First sublist Second sublist

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

29

STACKS: Illustra(on of the way the STACKS LOWER and UPPER are used

557790 60 99 88 66

A[6] A[7] A[8] A[9] A[10] A[11] A[12]

557766 60 99 88 90

557766 60 90 88 99

557766 60 88 90 99

First sublist
Second sublist

• The second sublist has only one element, Accordingly
• The algorithm pushes only the boundary values 6 and 10 of the first

sublist on the STACKs to yield
• LOWER= 1, 6 and UPPER= 4, 10 ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

30

• The quick sort is regarded as the best sor3ng algorithm.

• This is because of its significant advantage in terms of efficiency because it is able

to deal well with a huge list of items.

• Because it sorts in place, no addi3onal storage is required as well.

• The slight disadvantage of quick sort is that its worst-case performance is similar to

average performances of the bubble, inser3on or selec3ons sorts.

• In general, the quick sort produces the most effec3ve and widely used method of

sor3ng a list of any item size.

QUICKSORT

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

STACKS:

31

• Observe that the reduc5on step in the kth level
finds the loca5on of 2k-1 elements.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Recursion: Procedure

32

ü Recursion is an important concept in Computer Science.

ü Suppose, P is a procedure containing either

Ø a Call statement to itself or

Ø a Call statement to a second procedure that may eventually

result in a Call statement back to the original procedure, P

ü Then P is called a Recursive Procedure.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Recursion: Procedure

33

ü A Recursive Procedure must have the following two proper8es:

• There must be certain criteria, called base criteria, for which the

procedure does not call itself

• Each 8me the procedure does call itself (directly or indirectly), it

must be closer to the base criteria.

ü A Recursive Procedure with these two proper8es is said to be well-

defined.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

34

Recursion: Func/on
ü A func/on is said to be Recursively defined if the func/on defini/on

refers to itself.
ü A Recursive Func/on must have the following two proper/es:

Ø There must be certain arguments, called BASE VALUE, for which
the func/on does not refer to itself.

Ø Each /me the func/on does refer to itself, the argument of the
func/on must be closer to a BASE VALUE.

ü A Recursive Func/on with two proper/es is also said to be well-
defined.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

35

Recursion: Factorial Func2on
ü In some problems, it may be natural to define the problem in terms

of the problem itself.
ü Recursion is useful for problems that can be represented by a
SIMPLER VERSION of the same problem.

ü Example: the factorial func2on
6! = 6 * 5 * 4 * 3 * 2 * 1

We could write:
6! = 6 * 5!

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

36

Recursion: Factorial Func2on

ü In general, we can express the factorial func2on as follows:
n! = n * (n-1)!

Is this correct?
ü The factorial func2on is ONLY DEFINED for posi%ve integers. So we

should be a bit more precise:
i) n! = 1 (if n is equal to 1)
ii) n! = n * (n-1)! (if n is larger than 1)

ü Observe that, this defini2on of n! is recursive, since it refers to

itself when it uses (n-1)! , However,

ü i)the value of n! is explicitly given when n=0 (BASE VALUE)

ü ii)the value of n! for arbitrary n is defined in terms of a smaller

value of n which is closer to the BASE VALUE

Well… almost.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

37

Recursion: Factorial Func2on

EXAMPLE: Let’s calculate 3! Using the recursive defini2on.

(1) 3! = 3 . 2!
(2) 2! = 2 . 1!
(3) 1! = 1 . 0!
(4) 0! = 1 (BASE VALUE)
(5) 1! = 1 . 1 = 1
(6) 2! = 2 . 1 = 2
(7) 3! = 3 . 2 = 6
ü Observe that we back track in the reverse order of the original

postponded evalua>ons.
ü Recall that this type of postponed processing tends itself to the

use of STACKS.
ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

38

Recursion: Func/on

Assume the number typed is 3, that is, numb=3.
fac(3) :

int fac(int numb){
if(numb<=1)

return 1;
else

return numb * fac(numb-1);
}

3 <= 1 ? No.
fac(3) = 3 * fac(2)

fac(2) :
2 <= 1 ? No.
fac(2) = 2 * fac(1)

fac(1) :
1 <= 1 ? Yes.
return 1

fac(2) = 2 * 1 = 2
return fac(2)

fac(3) = 3 * 2 = 6
return fac(3)

fac(3) has the value 6

i) n! = 1 (if n is equal to 1)
ii) n! = n * (n-1)! (if n is larger than 1)

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

39

Recursion: Func/on

Itera&ve solu&on
int fac(int numb){
int product=1;

while(numb>1){
product *= numb;

numb--;
}

return product;
}

Recursive solu&on

int fac(int numb){
if(numb<=1)

return 1;
else

return numb*fac(numb-1);
}

For certain problems (such as the factorial func/on), a
recursive solu/on o<en leads to short and elegant code.
Compare the recursive solu/on with the itera/ve solu/on:

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

40

Recursion: Cost
ü You have to pay a price for recursion:

Ø Calling a func9on CONSUMES MORE TIME AND MEMORY than adjus9ng a

loop counter.

Ø High performance applica9ons (graphic ac9on games, simula9ons of

nuclear explosions) hardly ever use recursion.

ü In LESS DEMANDING APPLICATIONS recursion is an aDrac9ve

alterna9ve for itera9on.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

41

Recursion: Precau0ons

You must always make sure that the recursion bo#oms out:

Ø A recursive func0on must contain at least one non-recursive

branch.

Ø The recursive calls must eventually lead to a non-recursive branch.

int fac(int numb){
if(numb<=1)

return 1;
else

return numb * fac(numb-1);
}

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

42

Recursion: Func/on
How many pairs of rabbits can be produced from a
single pair in a year's time?
Assump&ons:

o Each pair of rabbits produces a new pair of offspring every month;
o each new pair becomes fer/le at the age of one month;
o none of the rabbits dies in that year.

Example:
§ ABer 1 month there will be 2 pairs of rabbits;
§ aBer 2 months, there will be 3 pairs;
§ aBer 3 months, there will be 5 pairs (since the following month

the original pair and the pair born during the first month will both
produce a new pair and there will be 5 in all).

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

43

Recursion: Func/on
Population Growth in Nature

ü Leonardo Pisano (Leonardo Fibonacci, son of Bonaccio) proposed the
(Fibonacci) sequence in 1202 in The Book of the Abacus.

ü Fibonacci numbers are believed to model nature to a certain extent,
such as Kepler's observa/on of leaves and flowers in 1611.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

44

Recursion: Func.on

Direct Computa-on Method
Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
where each number is the sum of the preceding two.

Recursive defini.on:
F(0) = 0;
F(1) = 1;
F(number) = F(number-1)+ F(number-2);

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

http://www.ee.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html

45

Recursion: Func/on
// Calculate Fibonacci numbers using recursive function.

// A very inefficient way, but illustrates recursion well

int fib(int number)

{

if (number == 0) return 0;

if (number == 1) return 1;

return (fib(number-1) + fib(number-2));

}

int main(){ // driver function

int inp_number;

printf("Please enter an integer: ”);

scanf(“%d”&inp_number);

cout << "The Fibonacci number for "<< inp_number

<< " is "<< fib(inp_number)<<endl;

return 0;

}

Recursive defini/on:
F(0) = 0;
F(1) = 1;
F(number)=F(number-1)+ F(number-2);

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

46

Recursion: Fibbonacci

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

47

Recursion: Trace a Fibonacci Number

Assume the input number is 4, that is, num=4:
fib(4):

4 == 0 ? No; 4 == 1? No.
fib(4) = fib(3) + fib(2)
fib(3):

3 == 0 ? No; 3 == 1? No.
fib(3) = fib(2) + fib(1)
fib(2):

2 == 0? No; 2==1? No.
fib(2) = fib(1)+fib(0)
fib(1):

1== 0 ? No; 1 == 1? Yes.
fib(1) = 1;

return fib(1);

int fib(int num)
{

if (num == 0) return 0;
if (num == 1) return 1;
return
(fib(num-1)+fib(num-2));

}

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

48

fib(0):
0 == 0 ? Yes.
fib(0) = 0;
return fib(0);

fib(2) = 1 + 0 = 1;
return fib(2);

fib(3) = 1 + fib(1)
fib(1):
1 == 0 ? No; 1 == 1? Yes
fib(1) = 1;
return fib(1);

fib(3) = 1 + 1 = 2;
return fib(3)

Recursion: Trace a Fibonacci Number

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

49

Recursion:

fib(2):
2 == 0 ? No; 2 == 1? No.
fib(2) = fib(1) + fib(0)
fib(1):

1== 0 ? No; 1 == 1? Yes.
fib(1) = 1;
return fib(1);

fib(0):
0 == 0 ? Yes.
fib(0) = 0;
return fib(0);

fib(2) = 1 + 0 = 1;
return fib(2);

fib(4) = fib(3) + fib(2)
= 2 + 1 = 3;

return fib(4);

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

50

Recursion: Divide-and-Conquer Algorithms
ü Consider a problem P associated with a set S.
ü Suppose A is an algorithm which par@@ons S into smaller sets such

that the solu@on of the problem P for S is reduced to the solu@on of
P for one or more of the smaller sets.

ü Then A is called a divide-and-conquer Algorithm.

ü Examples:
The Quicksort Algorithm

-use reduc@on step to find the loca@on of a single element
and to reduce the problem of sor@ng the en@re set to the problem of
sor@ng smaller sets

The Binary Search Algorithm
-divides the given sorted set into two halves so that the

problem of searching for an item in the en@re set is reduced to the
problem of searching for the item in one of the two halves.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

51

Recursion: Divide-and-Conquer Algorithms

ü A divide-and-conquer algorithm A may be viewed as a recursive

procedure. But Why?
ü The divide-and-conquer algorithm A may be viewed as

calling itself when it is applied to the smaller sets.

ü The base criteria for these algorithms are usually the one-

element sets.

ü For example, with a sorHng algorithm, a one-element set is

automaHcally sorted, and

ü with a searching algorithm, one-element set requires only a

single comparison.
ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

52

TOWER of HANOI Problem

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

53

TOWER of HANOI Problem

ü Only one disc could be moved at a ?me
ü A larger disc must never be stacked above a

smaller one
ü One and only one extra needle could be used for

intermediate storage of discs

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

54

TOWER of HANOI Problem Solu7on
The solu7on to the Tower of Hanoi problem for n=3 appears

N=3: A→C, A→B, C→B, A→C, B→A, B→C, A→C,

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

TOWER of HANOI Problem Solu5on
The SEPARATE SOLUTION to the Tower of Hanoi problem

for n=1
Solu3on: A→C

n=2

Solu3on: A→B, A→C, B→C

n=3

Solu3on: A→C, A→B, C→B, A→C, B→A, B→C, A→C

ü General Solu3on to the Tower of Hanoi for any # of Disk is
PREFERRED.

ü Which can be done in RECURSIVE way.
ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Solu%on of TOWER of HANOI in RECURSIVE WAY
ü The solu%on to the Tower of Hanoi problem for n>1 disks may be

reduced to the following sub-problems:
Ø Move the top n-1 disks from peg A to peg B.

Ø Move the top disk from A to peg C: A→C

Ø Move the top n-1 disks from peg B to peg C

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Solu%on of TOWER of HANOI in RECURSIVE WAY
The general nota%on of the solu%on for any # of disk:

TOWER(N, BEG, AUX, END)

When n=1 then

TOWER(1, BEG, AUX, END)
BEG → END, But

When n> 1 then then solu%on may be reduced to the solu%on of the

following three sub-problem:

(1) TOWER (N-1, BEG, END, AUX)
(2) TOWER (1, BEG, AUX, END)
(3) TOWER (N-1, AUX, BEG, END)

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Recursive Solu-on to TOWER of HANOI Problem

T(4,A,B,C)

T(3,B,A,C)

T(3,A,C,B)

A→CT(1,A,B,C)

A→BT(1,A,C,B)

T(2,A,B,C)

T(2,A,B,C)

T(2,C,A,B)

T(1,A,C,B)

--- A→CT(1,A,B,C)
T(1,B,A,C)

T(1,C,B,A)
C→BT(1,C,A,B,)

T(1,A,C,B)

T(2,B,C,A)

B→CT(1,B,A,C)

B→AT(1,B,C,A)
T(1,B,A,C)

T(1,C,B,A)

A→CT(1,A,B,C)
T(1,A,C,B)

T(1,B,A,C)

--- A→B

--- B→C

--- A→B

--- C→A

--- C→B
--- A→B
--- A→C

--- B→C

-- B→A
--- C→A
--- B→C
--- A→B

--- A→C

--- B→C

B→C
A→C

C→A

A→B

B→C

C→A

A→B

B→C

A→B

M
ov

in
g

Se
qu

en
ce

s
ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Formal TOWER of HANOI Problem Solving Procedure

TOWER (N, BEG, AUX, END)

Step1. If N=1, then:

(a) Write: BEG→END.

(b) Return.

[End of If Structure]

Step2. [Move N-1 disks from peg BEG to peg AUX.]

Call TOWER (N-1, BEG, END, AUX).

Step3. Write: BEG → END.

Step4. [Move N-1 disks from peg AUX to peg END.]

Call TOWER (N-1), AUG, BEG, END).

Step5. Return
ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Implementa)on of Recursive Pro. By STACKS

Before implemen)ng Recursive procedures…..

Imagine a SUBPROGRAM…
ü It may contain both parameters, and local variables.
ü The parameters are the variables which receive values from

objects in the CALLING PROGRAM.
ü It transmit values back to the CALLING PROGRAM.
ü It must also keep track of the return address in the CALLING

PROGRAM.
ü The return address is essen)al, since control must be

transferred back to its proper place in the CALLING PROGRAM.
ü Once the subprogram finished execu)ng and control is

transferred back to the CALLING PROGRAM.
ü The values of the local variables and the return address are no

longer needed.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Implementa)on of Recursive Pro. By STACKS
Suppose SUBPROGRAM is a recursive program…then
ü Each level of execu)on of the subprogram may contain

different values for the parameters and local variables,
and for the return address.

ü Furthermore, if the recursive program does call itself,
then these current values must be saved, since they will
be used again when the program is reac)vated.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ü A queue is a linear list of elements in which…

Ø dele4ons can take place only at one end, called the front, and

Ø inser4ons can take place only at the other end, called the rear.

ü Queues are also called first-in first-out (FIFO) list

ü This contrasts with stacks, which are LIFO

ü An important example of a queue in computer science occurs in a
4mesharing system in which programs with the same priority form
a queue while wai4ng to be executed.

Queues

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Queues: Example
Consider a Queue with 4 elements

AAAA BBBB CCCC DDDD EEE

re
ar

üSuppose an element is deleted from the 4 element queue.
Which is we can delete??

AAAA
Then which one is considered to be the front element?

BBBB
Suppose EEEE is added to the queue

Then which one is considered to be the rear element?
EEEE

fr
on

t

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Queues: Representation
ü Queues may be represented in the computer in various ways.
ü Usually by means of

Ø One-way list
Ø Linear arrays

ü Each of the queues will be maintained by …
Ø A Linear Array QUEUE
Ø Two pointer variables:

o FRONT (containing the locaEon of the front element of
the Queue)

o REAR (containing the locaEon of the rear element of
the Queue)

ü The condiEon FRONT= NULL will indicate that the Queue is……
EMPTY.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Queues: Representa-on

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Queues: Representa-on
üAfter N insertion, the REAR element of the QUEUE will occupy

QUEUE [N]
üThis occurs even though the queue itself may not contain many

elements

üSuppose, we want to insert an element ITEM into a queue at the
time the queue does occupy the last part of the array, that is
REAR=N.

üOne way to do this is to simply move the entire queue to the
beginning of the array changing FRONT and REAR accordingly.

üThen insert item as above.

üThis procedure is very expensive
üThe procedure we adopt is to assume that the array QUEUE is
Circular. ie, QUEUE[1] comes after QUEUE[N]

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Queues: Representa-on

ü Similarly, if FRONT=N and an element of Queue is deleted.
ü We reset FRONT=1, instead of increasing FRONT to N+1.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Queues: Representa-on

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Queues: Inser*on Algorithm

QINSERT (QUEUE, N, FRONT, REAR, ITEM)

Step1. [QUEUE already filled?]

If FRONT=1 and REAR=N, or FRONT=REAR+1, then:

Write: OVERFLOW, and Return

Step2. [Find new value of REAR.]

If FRONT:=NULL, then: [Queue ini*ally empty]
Set FRONT:=1 and REAR:=1

Else if REAR=N, then:
Set REAR:=1,

Else:
Set REAR:=REAR+1. [End of If structure]

Step3. Set QUEUE[REAR]=ITEM [This inserts new item]

Step4. Return

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Queues: Dele)on Algorithm
QDELETION (QUEUE, N, FRONT, REAR, ITEM)

Step1. [QUEUE already empty?]

If FRONT=NULL then:
Write: UNDERFLOW, and Return

Step2. Set ITEM:= QUEUE[FRONT],

Set3. [Find new value of FRONT.]

If FRONT:=REAR, then: [Queue has only one element to start]
Set FRONT:=NULL and REAR:=NULL

Else if FRONT=N, then:
Set FRONT:=1,

Else:
Set FRONT:=FRONT+1.

[End of If structure]

Step4. Return
ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Deques: Defini+on
ü A deque is a linear linear list in which elements can be added or

removed at either end but not in the middle.
ü Deque can be maintained by……

Ø a CIRCULAR array
Ø Pointer LEFT-which points leG end of the deque
Ø Pointer RIGHT-which points right end of the deque.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Deques: Varia,on
ü There are TWO varia,ons of a Deque-

Ø An Input-restricted deque, and

Ø An Output-restricted deque

ü This are intermediate between a Deque and Queue

ü An Input-restricted deque is a deque which allow inser,on at only

one end of the list but allows dele,ons at both ends of the list

ü An output-restricted deque is a deque which allows dele,ons at only

one end of the list but allows inser,ons at both ends of the list.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Priority Queues: Defini0on
A priority queue is a collec0on of elements such that each elements has

been assigned a priority and such that the order in which elements are

deleted and processed comes from the following rules:

• An element of higher priority is processed before any element of

lower priority

• Two elements with same priority are processed according to the

order in which they were added to the queue.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Priority Queues: One-way List Representa5on

One way to maintain a priority queue in memory is by means of a one-

way list, as follows

a) Each node in the list will contain three items of informa5on:

Ø An Informa5on field INFO,
Ø A priority number PRN, and
Ø A link number LINK

b) A node X precedes a node Y in the list
(1) when X has higher priority then Y
(2) When both have the same priority but X was added to the list

before Y

v Priority numbers will operate in the usual way: the Lower the priority

number, the higher the priority.

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Priority Queues: Schema2c Diagram with 7 element

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

LOOK at to the SOLVED Problems

6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10
6.11, 6.12
6.14, 6.15, 6.16, 6.17
6.21,

ICE 2231/ Stacks Queues and Recursion© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

