ICE-2231
(Data Structures and Algorithms)

Lecture on
Chapter-3: Stacks, Queues, Recursion

By
Dr. M. Golam Rashed

(golamrashed@ru.ac.bd)

Department of Information and Communication Engineering (ICE)
University of Rajshahi, Rajshahi-6205, Bangladesh

1

STACKS: Introduction

Stack of Stack of

Stack of

dishes pennies folded towels

i

[

» A stack is a linear structure in which items may be added or removed
only at one ends

» Stacks are also called Last-in-First-out (LIFO) list.
» Other names:
** Piles

¢ Push-down lists.

» Although the stack may be a very restricted type of data structure, it
has many important applications in computer science. 2

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: Dealing Postponed Decisions

Stacks are frequently used to indicate the order of the
processing of data when certain steps of the

processing must be postponed until other conditions
are fulfilled.

3
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: Special Terminology

Special terminology is used for two basic operations associated with

pushw/a pop

top

stacks:

(a) “Push”-used to insert an element into a stack

(b) “Pop”-used to delete an element from a stack.

4
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: Push Example

Suppose the following 6 elements are pushed, in order, onto an empty

stack: I | AAA
AAA, BBB, CCC, DDD, EEE, FFF > | bon
3 1. €CC
TOP 4 | DDD
TOP 5 EEE
: L»ﬁ FFF
FFF
-, f
EEE ‘ 8
v |f EEE | FFF i
DDD st LR s 5 6 7 8 Y Nppes N 9
I 2 3 %
CCC A TOP —_—__le\
BBB N-1
AAA
N
(b)
(a)
Diagram of Stack ;

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: Array Representation

» Stack may be represented in the computer in various ways,
v usually by means of a one-way list, or
v' Alinear array
» Usually Stacks will be maintained by......
o Alinear array, STACK,(main lists)
o A pointer variable, TOP, (contains the locations of the top
element of the stack)
o A variable MAXSTK, (gives the maximum number of

elements that can be held by the stack)

The condition TOP=0 or TOP=NULL of a STACK indicates.....?
EMPTY °

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: Array Representation Example

STACK
XXX YYY 277
1 2 3 4 5 6 7 j
TOP J MAXSTK 8
Fig. 6-5

Present Status: TOP=3;

MAXSTK=S,;

There is room for 5 more items in the stack

Future Implementation:
Pushing an item onto a stack

Popping an item from a stack

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

7
ICE 2231/ Stacks Queues and Recursion

STACKS: Pushing Algorithm

PUSH (STACK, TOP, MAXSTK, ITEM)
Step 1. [Stack already filled?]

If TOP=MAXSTK, then print: OVERFLOW, and Return.

Step 2. Set TOP=TOP+1. [Increase TOP by 1.]

Step 3. Set STACK[TOP]:=ITEM. [Insert ITEM in new TOP position]
Step 4. Return

— 1. Since TOP=3, go to Step 2
ESEEE 2. TOP=3+1=4
1 2 3 4 s 6 1 8
s ___J o ___j 3. STACK [TOP]=STACK[4]= www
bigiite 4. Return .

r. WMid. " Golam Rashed, Assoc. Professor, Dept. o , RU 1€E-2231/ Stucks Queves umd-Recursiot

STACKS: Popping Algorithm

POP (STACK, TOP, ITEM)

Step 1. [Stack has an item to be removed?]

If TOP=0, then print: Underflow, and Return.
Step 2. Set ITEM= STACK[TOP] [Assign TOP element to ITEM.]

Step 3. Set TOP:= TOP-1. [Decreases TOP by 1]

Step 4. Return

— 1. Since TOP=3, go to Step 2
Lo | vev [2z 2. ITEM=272Z.
1 2 3 4 b 6 1 8
Y e ___J — ___j 3. TOP=3-1=2.
Ll 4. Return.

r. WMid. " Golam Rashed, Assoc. Professor, Dept. o , RU 1€E-2231/ Stucks Queves umd-Recursiot

STACKS:

PUSH POP
1. Since TOP=3, go to Step 2 1. Since TOP=3, go to Step 2
2. TOP=3+1=4 2. ITEM=ZZZ.

3. STACK [TOP]=STACK[4]=www | | 3. TOP=3-1=2.

4. Return 4. Return.

v TOP is changed before the insertion in PUSH, whereas

v TOP is changed after the deletion in POP

10
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: Arithmetic Expressions;

v’ Let Q be an arithmetic expression involving constants and operation.

Q: 2 TM3+45*2 18 2-12/6, we have to find the value of Q

v'Q may have different levels of precedence in its binary operations.
v We assume the following three levels of precedence for the usual
FIVE binary operations.
» Highest: Exponential (1)

» Next Highest: Multiplication (*) and division(/)
» Lowest: Addition (+) and Subtraction(-)

v Thus, we obtain after exponentiations (8+5*4-12/6)

v’ After, multiplication and division (8+20-2)

v’ After. Addition and subtraction, 26 11

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: Polish Notation

For most common arithmetic operations:

A+B, C-D, E*F G/H (infix notation)

Polish notation refers to the notation in which the operator symbol is

placed before its two operands.

For example: +AB, -CD, *EF /GH

Instant Exercise: (Infix expression to polish notation)

(A+B)*C =7 A+(B*C) =7
= [+AB]*C="? = A+[*BC]="?
= *+ABC = +A*BC

12

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: Polish Notation

(A+B)/(C-D) =?
= [+AB]/[-CD] =?
= [+AB-CD

v' The fundamental property of polish notation is that the
order in which the operations are to be performed is
completely determined by

v' The positions of the operators, and
v' Operands in the expression.

v' One never needs parentheses when writing expressions

in polish notation.

13
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: Reverse Polish Notation

Reverse Polish Notation refers to the analogous notation in which the

operator symbol is placed after its two operands:

AB+, CD-, EF%*, GH/
v’ This notation is frequently called postfix notation

v'One never needs parentheses to determine the order of

the operations in any arithmetic expression in postfix

notation

14
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: Evaluation of Postfix Expression

P: 5, 6, 2; +) *) 12} 4) /l B

© Dr. Md. Golam Rashed, Assoc. Pr

Symbol STACK
Scanned

(1) 5 5
(2) 6 5,6
(3) 2 5,6, 2
(4) + 5, 8
(5) * 40
(6) 12 40, 12
(7) 4 40,12, 4
(8) / 40, 3
(9) - 37

(10))

)yressor, bept. or iCE, KU

15
ICE 2231/ Stacks Queues and Recursion

STACKS:

Algorithm to find the VALUE of an arithmetic expression P
written in postfix notation.

1.
2.

Add a right parenthesis “)” at the end of P.
Scan P from left to right and repeat Steps 3 and 4 for
each of P until the “)” is encountered.
If an operand is encountered, put it on STACK
If an operator 3B is encountered, then:
a) Remove the two top elements of the STACK, where A
is the top element and B is the next-to-top element

D

b) Evaluate B 38 A
c) Place the result of (b) back on STACK.
[End of If structure]
[End of Step 2 loop]

5. Set VALUE equal to the TOP element on STACK.

@Emt &olam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: Transforming Q into P expression

Q:A+(B*C-(D/EMF)*G)*H

= (?) P expression

Symbol Scanned Stack Expression P

(1) A (A

(2) + (+ A

(3) ((+ (A

(4) B (+ (A B

(5) * (+(* AB

(6) C (+ (* ABC

(7) - (+ (- ABC*

(8) ((+ (- ABC*

(9) D (+ (- ABC*D

(10) / (+ (- (/ ABC*D

(11) E (+ (- (/ ABC*DE

(12) ¢ (+(-(/ 71 ABC*DE

(13) F (+ (- (/2 ABC*DEF

(14)) (+ (- ABC*DEF1 /
PDr. Md. Gglam) Rashed, Assoc(Profegsor Dept. of ICE, RU A B C I?CE §23E/ g:vc Queues aln/d Recursiol

STACKS: Transforming Q into P expression
Q:A+(B*C-(D/EMPF)*G)*H= (?)P expression

Symbol Scanned Stack Expression P
(7) - (+ (- ABC*
(8) ((+ (- ABC*
(9) D (+ (- ABC*D
(10) / (+ (- (/ ABC*D
(11) E (+ (- (/ ABC*DE
(12) ¢ (+(-(/ 1 ABC*DE
(13) F (+(- (/1 ABC*DEF
(14)) (+ (- ABC*DEF1/
(15) * (+ (- * ABC*DEFP/ °
(16) G (+ (- * ABC*DEF1P /G
(17)) (+ ABC*DEF/ [/ *-
(18) * (+ * ABC*DEFP /[*-
(19) H (+ * ABC*DEFMP/ *-H
(20)) ABC*DEFAP/*-HF*+

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2231/ Stacks Queues and Recursion

Instant TEST
12 17)3 A)/ ;2)1)5 1+ /*)+

Which Expression?
Postfix or Prefix
v Postfix

Equivalent infix expression ?
P=12,(7-3],/,2,1,5,+ % +
=[12/(7-3)],2,1,5, + *, +
=[12/(7-3)], 2, [1+5], *, +
=[12/(7-3)], [2* (1+5)], +
=12/(7-3) + 2* (1+5)

Instant TEST

Infix Prefix Postfix
A+B * C+D ++A*BCD ABC*+D+
(A+B) * (C+D) *+AB+CD AB*CD+*

A*B + C*D +*AB*CD AB*CD*+

A+B+C+D ++AB+CD AB+CD++

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

20

ICE 2231/ Stacks Queues and Recursion

Instant TEST

Infix Expression Prefix Expression Postfix Expression

1-473+7*(971/5)-2 | -+-1743*%719/152 | 143N-791N5/*+2-

A+B-(C*DME)*X+Y | +-+AB**CADEXY | AB+CDEM*X*-Y+

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

QUICKSORT: An Application of STACKS

 What is Sorting?
v’ The operation of rearranging the elements of a list so that they
are in some logical order.
= Numerically ordered (When list contain numerical data)
= Alphabetically ordered (When list contains character data)

* Quicksort is an algorithm of the DIVIDE-AND-CONQUER type.
» The problem of sorting a set is reduced to the problem of sorting
two smaller sets.
 We illustrate this “Reduced Step” by means of a specific example
* Suppose A is the following list of 12 numbers.

A
OO VOO0,

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues drfd Recursion

Reduction Step of the Quicksort Algorithm

A
0000 VOO0

 The reduction step of the quicksort algorithm finds the
final position of one of the numbers.

* |n thisillustration, we use the first number 44.

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues dnitl Recursion

STACKS: Quicksort/ Reduction Step

OO0 OVOOOOOO0,
DODOVOOOOO0

v' Beginning with the last number, 66, scan the list from right to left till less than 44.
v’ Interchange 44 and 22

00000000000,

v' Beginning with, 22, scan left to right till greater than 44
v Interchange 44 and 55

000000000000

v' Beginning with, 55, scan the list from right to left till less than 44.
24

v Interchange 44 and 40
© Dr. Md. golam %asged, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: Quicksort/ Reduction Step

008 0VODOOOO0

v Beginning with, 40, scan left to right till greater than 44
v" Interchange 44 and 77

000000V OOOO0

v’ Beginning with, 77, scan the list from right to left till less than 44.
v" Do not meet such a number before meeting 44.

(2EEEEEE(EEEEE)
\ J
| |

First sublist Second sublist
v’ Thus, 44 is correctly placed in its final position.
v’ The task of sorting the original list A has now been reduced to the
task of sorting each of the above sublists. 25

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: Quicksort/ Reduction Step

 The reduction step is repeated with each sublist containing 2 or
more elements.

* Since we can process one sublist at a time, we must be able to keep
track of some sublist for future processing.

* This is accomplished by using two STACKS

LOWER and UPPER
to temporarily hold such sub-lists.

 The addresses of the first and last elements of each sublist, called
its “BOUNDARY VALUES” , are pushed onto the STACKs LOWER and
UPPER, respectively.

* The reduction steps is applied to a sublist only after its BOUNDARY
VALUES are removed from the STACKs.

(DEHEEEDEEEEE

H H o 26
© Dr. Md. FG!EI§ Fagg,bjs!)§.trofessor, Dept. of ICE, RU S e C O n d S Ubjils;acks Queues and Recursion

STACKS: illustration of the way the STACKS LOWER and UPPER are used

A
0000 DOV

N=12 elements,
Thus,

Boundary values are ()?
1 and 12.

Now,
1 and 12 should be Stacked
LOWER:1 and UPPER:12

* In order to apply the REDUCTION STEP, the algorithm first removes

the top values 1 and 12.
* After removing the top values 1 and 12 from the STACK, leaving
LOWER:(Empty) and UPPER: (Empty)
* Then Applies the REDUCTION STEP to the corresponding I|st A[1]

©Dr. IARIIM RaQAIJ'sZJ:‘ Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: illustration of the way the STACKS LOWER and UPPER are used

e After executing REDUCTION STEP to the list A[1] to A[12]
* Finally places the first element 44, in A[5].

HEDEEED@EE®E

28

First sublist Second sublist
* Accordingly, the algorithm pushes the boundary values

1 and 4 of the first sublist, and
 6and 12 of the second sublist on to the STACK to yield
LOWER=1, 6 and UPPER=4, 12

* In order to apply the REDUCTION STEP again, the algorithm removes
the TOP values 6 and 12 from the STACKSs, leaving
LOWER=1, and UPPER=4

28
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS: illustration of the way the STACKS LOWER and UPPER are used

A[7] A[8] A[9] A[10] A[11] A[12]

@@
@
)
©

J

OJOJOI0

@
@
@
@

p— Z
2

, , Second sublist
First sublist

 The second sublist has only one element, Accordingly
* The algorithm pushes only the boundary values 6 and 10 of the first

sublist on the STACKSs to yield
© Dr. Md. Golam Rashed, Assoc. ProfessoLQWE&_RLJ'I 6 an d U P P E R_ 4 10 ICE 2231/ Stacks Queues azn9d Recursion

QUICKSORT

* The quick sort is regarded as the best sorting algorithm.

* This is because of its significant advantage in terms of efficiency because it is able
to deal well with a huge list of items.

 Because it sortsin place, no additional storage is required as well.

 The slight disadvantage of quick sort is that its worst-case performance is similar to
average performances of the bubble, insertion or selections sorts.

* In general, the quick sort produces the most effective and widely used method of

sorting a list of any item size.

30
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

STACKS:

* Observe that the reduction step in the k" level
finds the location of 2¥1 elements.

31
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursion: Procedure

v’ Recursion is an important concept in Computer Science.
v’ Suppose, P is a procedure containing either
» a Call statement to itself or
» a Call statement to a second procedure that may eventually
result in a Call statement back to the original procedure, P

v’ Then P is called a Recursive Procedure.

32
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursion: Procedure

v A Recursive Procedure must have the following two properties:

 There must be certain criteria, called base criteria, for which the

procedure does not call itself

Each time the procedure does call itself (directly or indirectly), it

must be closer to the base criteria.

v A Recursive Procedure with these two properties is said to be well-
defined.

33

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursion: Function

v A function is said to be Recursively defined if the function definition
refers to itself.
v A Recursive Function must have the following two properties:
» There must be certain arguments, called BASE VALUE, for which
the function does not refer to itself.
» Each time the function does refer to itself, the argument of the
function must be closer to a BASE VALUE.

v' A Recursive Function with two properties is also said to be well-
defined.

34
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursion: Factorial Function

v’ In some problems, it may be natural to define the problem in terms

of the problem itself.

v’ Recursion is useful for problems that can be represented by a
of the same problem.

v Example: the factorial function
6! = 6 * 5 ¥ 4 ¥ 3 ¥ 2 %]
We could write:
6! = 6 * 5!

35
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursion: Factorial Function

v’ In general, we can express the factorial function as follows:
n! =n * (n-1)!
Is this correct? Well... almost.

v’ The factorial function is ONLY DEFINED for positive integers. So we
should be a bit more precise:

i) n! =1 (1f n is equal to 1)

ii) n! = n * (n-1)! (if n is larger than 1)

v" Observe that, this definition of n! s recursive, since it refers to
itself when it uses (n-1) ! , However,
v’ i)thevalueof n! is explicitly given when n=0 (BASE VALUE)

v’ ii)the value of n! for arbitrary n is defined in terms of a smaller

36

©Dr. MA./ aJureQQ;femchjg msls%r,dgtsg Eét, Qut h e BAS E VA LU E ICE 2231/ Stacks Queues and Recursion

Recursion: Factorial Function

EXAMPLE: Let’s calculate 3! Using the recursive definition.
(1) 3!' =3 . 2!

(2) 2! =2 . 1!
(3) 1' =1 . 0!
(4) 0! = 1 (BASE VALUE)

=
I
=
=
I
=

(5)
(6) 21 =2 . 1 =2
(7) 3! =3 .2=6

v’ Observe that we back track in the reverse order of the original
postponded evaluations.

v Recall that this type of postponed processing tends itself to the
use of STACKS. 37

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursion: Function

Assume the number typed is 3, that is, numb=3.

fac(3) :
3 <=17? No.
fac(3) = 3 * fac(2)
fac(2) :
2 <=1 ? No.
fac(2) = 2 * fac(1l) i) n! =1 (if n is equal to 1)

ii) n! n * (n-1)! (if n is larger than 1)

fac(1l) :
1 <=1 ? Yes. ‘

v return 1 fac (numb) {
fac(2) = 2 * 1 = 2 | (numb<=1)|
return fac(2) return 1;

v
fac(3) = 3 * 2 = 6

return fac(3) return numb * fac (numb-1);

fac (3) has the wvalue ©

38

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursion: Function

For certain problems (such as the factorial function), a
recursive solution often leads to short and elegant code.
Compare the recursive solution with the iterative solution:

fac(numb) {
fac(numb) { product=1;
(numb<=i) (numb>1) {
' product *= numb;
numb*fac (numb-1) ; numb--;
} }

product;
}

39
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursion: Cost

v" You have to pay a price for recursion:

» Calling a function CONSUMES MORE TIME AND MEMORY than adjusting a

loop counter.

» High performance applications (graphic action games, simulations of

nuclear explosions) hardly ever use recursion.

v In LESS DEMANDING APPLICATIONS recursion is an attractive

alternative for iteration.

40
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursion: Precautions

You must always make sure that the recursion bottoms out:

> A recursive function must contain

» The recursive calls must eventually lead to a non-recursive branch.

fac (numb) {
(numb<=1)|
return 1;

return numb * fac (numb-1);

41
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursion: Function

How many pairs of rabbits can be produced from a
single pair in a year's time?

Assumptions:
o Each pair of rabbits produces a new pair of offspring every month;
o each new pair becomes fertile at the age of one month;
o none of the rabbits dies in that year.

Example:
= After 1 month there will be 2 pairs of rabbits;
= after 2 months, there will be 3 pairs;

= after 3 months, there will be 5 pairs (since the following month
the original pair and the pair born during the first month will both
produce a new pair and there will be 5 in all).

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursion: Function
Population Growth in Nature

MNurmber

44
se
Y6 W

3888 38 ;
38888383 48

v’ Leonardo Pisano (Leonardo Fibonacci, son of Bonaccio) proposed the
(Fibonacci) sequence in 1202 in The Book of the Abacus.

v’ Fibonacci numbers are believed to model nature to a certain extent,
such as Kepler's observation of leaves and flowers in 1611.

43
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursion: Function
Direct Computation Methoad

Fibonacci numbers:
o, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

where each number is the sum of the preceding two.

Recursive definition:
F(0) = O; 25
F(l) = 1;
F (number) = F (number-1)+ F (number-2) ;

44
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

http://www.ee.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html

Recursion: Function

£ib (number)

(number

(number

0)
1)

0;
1;

Recursive definition:

F(0) = O;

F(1) = 1;

F (number) =F (number-1) + F (number-2) ;

(fib (number-1) + £fib (number-2)) ;

main () {

inp number;

printf ("Please enter an integer: ”);

scanf (“"%d” &inp number) ;

cout << "The Fibonacci number for "<< inp number

<< " 1is "<< fib(inp number)<<endl;

0;

© l}r. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

45
ICE 2231/ Stacks Queues and Recursion

Recursion: Fibbonacci

Fib,, Fib(4)
Fiby_| + Fiby_» Fib(3) n Fib(2)
Fiby [+ |Fib,3 Fibr.l_g, + Fibr.l_4 Fib2) | + Fib](l) Fib](l) + Fit(>)(0)
Fib?_g, + Fibr.l_4 Fib](l) N Fil:())(O)
— . .(a) Fib(n) (b) Fib(4)

46
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursion: Trace a Fibonacci Number

Assume the input number is 4, that is, num=4:

fib(4) :
4 == 0 ? No; 4 == 1? No.
fib(4) = £ib(3) + fib (2)
£fib (3) :
3 =0 ? No; 3 == 17 No.
fib(3) = £fib(2) + f£ib (1)
fib(2) :
2 == 0? No; 2==17? No.
fib(2) = £ib (1) +£ib (0)
fib (1) :

1== 0 ? Noy 1 == 17 Yes.

fib(1l) = 1%
fib (1) ;

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

int fib(int num)

{

if (num == 0) return O;
if (num == 1) return 1;
return
(fib (num-1) +£fib (num-2)) ;
}
Fib(4)
*
Fib(3) + Fib(2)

Fib(2) | + |Fib(1) Fib(1) | + | Fib(0)
/ I I 0

Fib(1) | + [Fib(0)
I 0

ICE 2231/ Stacks Queues and Recursion

Recursion: Trace a Fibonacci Number

fib (0) : i)
0O == 0 ? Yes.
fib(0) = 0; ’
fi1ib (0) ; F1b(3) + Fib(2)
fib(2) = 1 + 0 = 1;
fib (2); \\
fib(3) =1 + fib (1)
fib (1) : F1b(2) F1b(1) Fib(1) | + | Fib(0)
1 == 0 ? No; 1 == 12 Yes : : v
fiba) = 1; //&
fib (1);
flb(3) = 1 4+ 1 = 2; Flb(l) Flb(O)
fib (3) | i

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2231/ Stacks Queues drid Recursion

Recursion:

fib(2) :
2 == 0 ? No; 2 == 17

fib(2) = fib(1l) + £ib (0)

fib (1) :

1==0 ? No; 1 == 17

fib(l) = 1;
fib (1) ;
£fib (0) :
O =072 Yes.
£fib(0) = 0;
£fib (0) ;
fib(2) =1 + 0 = 1;
fib(2) ;
fib(4) = £fib(3) + fib (2)
=2 + 1= 3;
fib(4) ;

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Fib(4)

Fib(3) + Fib(2)

Fib(2) [+ |Fib(1) Fib(l) | + | Fib(0)

Fib(1)

I I 0

Fib(0)
0

49
ICE 2231/ Stacks Queues and Recursion

Recursion: Divide-and-Conquer Algorithms

v’ Consider a problem P associated with a set

v’ Suppose A is an algorithm which partitions S into smaller sets such
that the solution of the problem P for S is reduced to the solution of
P for one or more of the smaller sets.

v’ Then A is called a divide-and-conquer Algorithm.

v' Examples:

The Quicksort Algorithm
-use reduction step to find the location of a single element
and to reduce the problem of sorting the entire set to the problem of
sorting smaller sets

The Binary Search Algorithm

-divides the given sorted set into two halves so that the
problem of searching for an item in the entire set is reduced to the
problem of searching for the item in one of the two halves.

50
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursion: Divide-and-Conquer Algorithms

v" A divide-and-conquer algorithm A may be viewed as a recursive

procedure. But Why?

v’ The divide-and-conquer algorithm A may be viewed as
calling itself when it is applied to the smaller sets.

v’ The base criteria for these algorithms are usually the one-
element sets.

v For example, with a sorting algorithm, a one-element set is
automatically sorted, and

v’ with a searching algorithm, one-element set requires only a

single comparison.

51
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

TOWER of HANOI Problem

© Dr. Md. Gola

Fig. 6-10 Initial sctup of Towers of Hanoi with n = 6,

52
and Recursion

TOWER of HANOI Problem

A

B

Fig. 6-10 [Initial sctup of Towers of Hanoi with = 6,

v Only one disc could be moved at a time

v' A larger disc must never be stacked above a

smaller one

v' One and only one extra needle could be used for
intermediate storage of discs

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

53
ICE 2231/ Stacks Queues and Recursion

TOWER of HANOI Problem Solution

The solution to the Tower of Hanoi problem for n=3 appears

A B ¢ = 8 C A B C - e &
(@) Initial. (1) A—C. (2) A—B. (3) C—B.

A B C A B C i B ¢ A B C
(4) ‘A=C. (5) B—A. (6) B—C. (7) A-C
N=3: A->C, A->B, C->B, A->C, B-A, B->C, A->C,

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

54

ICE 2231/ Stacks Queues and Recursion

TOWER of HANOI Problem Solution
The SEPARATE SOLUTION to the Tower of Hanoi problem

for n=1
Solution: A= C

n=2
Solution: A= B, A—>C, B=>C
n=3

Solution: A=C, A-»B, C-»B, A-»>C, B>A, B->C, A—>C

v General Solution to the Tower of Hanoi for any # of Disk is
PREFERRED.
v Which can be done in RECURSIVE way.

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Solution of TOWER of HANOI in RECURSIVE WAY

v’ The solution to the Tower of Hanoi problem for n>1 disks may be
reduced to the following sub-problems:

» Move the top n-1 disks from peg A to peg B.

» Move the top disk from A to peg C: A->C

» Move the top n-1 disks from peg B to peg C

© Dr. Md. Golam Rash

A

B
h

C
h

s

J>

(a) Initial: n=6.

D o)

(oo 2 L

D)

.

]

J

(c) Move top disk from peg A to peg C.

A
M

PIg)

£ D)

L J
(b) Move top five disks from peg A to peg B.
A B C
r]

. £ 19

(d) Move top five disks from peg B to peg 34

es and Recursion

Solution of TOWER of HANOI in RECURSIVE WAY

The general notation of the solution for any # of disk:
TOWER(N, BEG, AUX, END)

When n=1 then
TOWER(1, BEG, AUX, END)
BEG — END, But

When n> 1 then then solution may be reduced to the solution of the
following three sub-problem:

(1) TOWER (N-1, BEG, END, AUX)
(2) TOWER (1, BEG, AUX, END)
(3) TOWER (N-1, AUX, BEG, END)

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Recursive Solution to TOWER of HANOI Problem
/T(llAICIB)\AeB ---

T(2,A,B,C)—T(1,A,B,C) — A>C oooeemeoeeeeeeeeeeeeo
TT(1,B,A,C) — BHC e

T(31A1C; B) _T(]-;A;C; B) e

/ R C - S ——

T(2,C,A,B)—T(1,C,A,B,)— C3B oo

TT(1,A,C,B)—ASB e
T(4,A,B,C)—T(1,A,B,C) e =

| o ({T((l,B,A,C);B%C ----------------
A _T 1,B,C,A —_— BA
W

~~
T(1,C,B,A)—Co3 A worrmmmermmrrmen
T(3,B,A,C)—T(1,B,A,C) (1.CBA) NéS

\ /T(l,A,C,B) = ADB oo
T(2,A,B,C) —T(1,A,B,C)— ASC rrormmememememmmemememeeememeeeeceee A-C
T(l,B,A,C) = B>C e B->C

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Formal TOWER of HANOI Problem Solving Procedure

TOWER (N, BEG, AUX, END)
Stepl. If N=1, then:
(a) Write: BEG—>END.
(b) Return.
[End of If Structure]
Step2. [Move N-1 disks from peg BEG to peg AUX.]
Call TOWER (N-1, BEG, END, AUX).
Step3. Write: BEG - END.
Step4. [Move N-1 disks from peg AUX to peg END.]
Call TOWER (N-1), AUG, BEG, END).

Step5. Return

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Implementation of Recursive Pro. By STACKS

Before implementing Recursive procedures.....
Imagine a SUBPROGRAM...

v" It may contain both parameters, and local variables.

v’ The parameters are the variables which receive values from
objects in the CALLING PROGRAM.

v' It transmit values back to the CALLING PROGRAM.

v It must also keep track of the return address in the CALLING
PROGRAM.

v The return address is essential, since control must be
transferred back to its proper place in the CALLING PROGRAM.

v’ Once the subprogram finished executing and control is
transferred back to the CALLING PROGRAM.

v The values of the local variables and the return address are no
longer needed.

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Implementation of Recursive Pro. By STACKS

Suppose SUBPROGRAM is a recursive program...then

v Each level of execution of the subprogram may contain
different values for the parameters and local variables,
and for the return address.

v' Furthermore, if the recursive program does call itself,
then these current values must be saved, since they will
be used again when the program is reactivated.

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Queues

v" A queue is a linear list of elements in which...
» deletions can take place only at one end, called the front, and
» insertions can take place only at the other end, called the rear.
v' Queues are also called first-in first-out (FIFO) list

v’ This contrasts with stacks, which are LIFO

BUS
sior

Fig. 6-2 Queue waiting for a bus.

v" An important example of a queue in computer science occurs in a
timesharing system in which programs with the same priority form
a queue while waiting to be executed.

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Queues: Example
Consider a Queue with 4 elements

BBBB CCCC DDDD

v'Suppose an element is deleted from the 4 element queue.

Which is we can delete??
AAAA
Then which one is considered to be the front element?
BBBB

Suppose EEEE is added to the queue

Then which one is considered to be the rear element?
EEEE

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Queues: Representation

v' Queues may be represented in the computer in various ways.
v’ Usually by means of
» One-way list
» Linear arrays
v’ Each of the queues will be maintained by ...
» A Linear Array QUEUE
» Two pointer variables:
o FRONT (containing the location of the front element of

the Queue)
o REAR (containing the location of the rear element of
the Queue)
v The condition FRONT= NULL will indicate that the Queue is......

EMPTY.

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Queues: Representation

FRONT: 1
REAR: 4

FRONT: 2
REAR: 4

FRONT: 2
REAR: 6

FRONT: 3
REAR: 6

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

QUEUE
AAA | BBB | CCC | DDD ‘,
1 2 3 4 5 N
-(a)
QUEUE
BBB | CCC | DDD
1 2 3 4 5 N
(b)
QUEUE
BBB | CCC | DDD | EEE
1 2 3 4 5 N
(c)
QUEUE
CCC | DDD | EEE
2 3 4 5 N
(d)

ICE 2231/ Stacks Queues and Recursion

Queues: Representation

v After N insertion, the REAR element of the QUEUE will occupy
QUEUE [N]

v This occurs even though the queue itself may not contain many
elements

v Suppose, we want to insert an element ITEM into a queue at the
time the queue does occupy the last part of the array, that is
REAR=N.

v’ One way to do this is to simply move the entire queue to the
beginning of the array changing FRONT and REAR accordingly.
v’ Then insert item as above.

v’ This procedure is very expensive
v’ The procedure we adopt is to assume that the array QUEUE is
Circular. ie, QUEUE[1] comes after QUEUE[N]

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Queues: Representation

v" Similarly, if FRONT=N and an element of Queue is deleted.
v' We reset FRONT=1, instead of increasing FRONT to N+1.

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Queues: Representation

(@) Initially empyy.

(®) A,Bang then C inserted;

(o A deleted:
(d) D and then E inserted;
(¢) BandC deleted:
(f) F inserted:
(8) D deleted:
() G and then H inserted:
(/) E deleted:
(/) F deleted:
(k) K inserted:

(!) G and H deleted:

© Dr. Md. Golam Rashed, Assoc. ProfSa"S')so",(55',5‘{%,98%‘;’5(]" Pty:

FRONT: ¢
REAR:

FRONT:
REAR:

FRONT:
REAR:

FRONT:
REAR:

FRONﬂ
REAR:

FRONT:
REAR:

FRONT:

REAR:

FRONT:
REAR:

FRONT:
REAR:

FRONT:
REAR:

FRONT:
REAR:

FRONT:
REAR:

FRONT:
REAR:

QUEUE

ICE 2231/ Stacks Queues and Recursion

Queues: Insertion Algorithm

QINSERT (QUEUE, N, FRONT, REAR, ITEM)

Stepl. [QUEUE already filled?]

If FRONT=1 and REAR=N, or FRONT=REAR+1, then:
Write: OVERFLOW, and Return

Step2. [Find new value of REAR.]
If FRONT:=NULL, then: [Queue initially empty]
Set FRONT:=1 and REAR:=1
Else if REAR=N, then:
Set REAR:=1,

Else:
Set REAR:=REAR+1. [End of If structure]
Step3. Set QUEUE[REAR]=ITEM [This inserts new item]

Step4. Return

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Queues: Deletion Algorithm
QDELETION (QUEUE, N, FRONT, REAR, ITEM)
Stepl. [QUEUE already empty?]

If FRONT=NULL then:
Write: UNDERFLOW, and Return

Step2. Set ITEM:= QUEUE[FRONT],

Set3. [Find new value of FRONT.]

If FRONT:=REAR, then: [Queue has only one element to start]
Set FRONT:=NULL and REAR:=NULL
Else if FRONT=N, then:
Set FRONT:=1,
Else:
Set FRONT:=FRONT+1.
[End of If structure]

Step4. Return

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Deques: Definition

v" A deque is a linear linear list in which elements can be added or
removed at either end but not in the middle.
v’ Deque can be maintained by......
» a CIRCULAR array
» Pointer LEFT-which points left end of the deque
» Pointer RIGHT-which points right end of the deque.

LEFT: 4 DEQUE
RIGHT: 7 AAA | BBB | CCC | DDD
1 2 3 4 s 6 7 8
(a)
DEQUE
RIGHT: 2 _
1 2 3 4 5 6 7 8

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Deques: Variation

v There are TWO variations of a Deque-
» An Input-restricted deque, and
» An Output-restricted deque

v’ This are intermediate between a Deque and Queue

v" An Input-restricted deque is a deque which allow insertion at only
one end of the list but allows deletions at both ends of the list
v An output-restricted deque is a deque which allows deletions at only

one end of the list but allows insertions at both ends of the list.

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Priority Queues: Definition

A priority queue is a collection of elements such that each elements has
been assigned a priority and such that the order in which elements are

deleted and processed comes from the following rules:

* An element of higher priority is processed before any element of
lower priority
* Two elements with same priority are processed according to the

order in which they were added to the queue.

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Priority Queues: One-way List Representation

One way to maintain a priority queue in memory is by means of a one-
way list, as follows

a) Each node in the list will contain three items of information:

» An Information field INFO,
» A priority number PRN, and
» A link number LINK

b) A node X precedes a node Y in the list

(1) when X has higher priority then Y
(2) When both have the same priority but X was added to the list
before Y

¢ Priority numbers will operate in the usual way: the Lower the priority

number, the higher the priority.

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

Priority Queues: Schematic Diagram with 7 element

START | *

AAA

START

AVAIL

GGG| 5| x

BBB| 2| e CCC|2 DDD
EEE | 4 | & FFF o
Fig. 6-19

INFO PRN LINK
1 BBB . 2 . 6
2 7
3 DDD } 4 4 R
4 EEE 4 . 9
5 AAA
6 ch 2! g
) 10
8 GGG S 0
9 FFF 4 8
10 11
11 12
12 0
Fig. 6-20

© Dr. Md. Golam kashed, Assoc. Professor, Dept. of ICE, RU

ICE 2231/ Stacks Queues and Recursion

LOOK at to the SOLVED Problems

6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,6.10
6.11, 6.12

6.14, 6.15, 6.16, 6.17

6.21,

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Stacks Queues and Recursion

