ICE-2231
(Data Structures and Algorithms)

Lecture on
Chapter-2: Arrays, Records, Pointers

By
Dr. M. Golam Rashed

(golamrashed@ru.ac.bd)

Department of Information and Communication Engineering (ICE)
University of Rajshahi, Rajshahi-6205, Bangladesh

ICE 2261
Data structures are classified as either Linear or Nonlinear.

A data structure is said to be Linear if its elements forms a sequence, or
a linear list.
e There are TWO basic ways of representing such linear structures in
memory.
e One ways is to have the linear relationship between the
elements represented by means of sequential memory locations.
(For example, ARRAYS).
e The other ways is to have the linear relationship between the
elements represented by mean of pointers or links. (For
example, linked lists)

* Nonlinear data structures (For example, tress and graphs)
discussed later.

2
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Operations on Linear Structure

ICE 2261

The operations one normally performed on any linear
structure include the following:

Traversing-Processing each element in the list

Search — Finding the location of the element with a given
value or the record with a given key.

Insertion-Adding a new element to the list.
Deletion-Removing an element from the list.
Sorting-Arranging the element in some type of order.

Merging-Combining two list into a single list.

3

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Linear Arrays

ICE 2261

A linear array is a list of finite number n of HOMOGENEOUS data
elements (i.e., data elements of the same type) such that:

 The elements of the array are referenced respectively by an index

set consisting of n consecutive numbers.

* The elements of the array are stored respectively in successive

memory locations.

1
D
3
4

-~

G

Index

Linear Arrav A

10

100

20

500

600

=

Value

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Base Address

10004

1002
1004
1006
1008

H,_J

\

Address (in bvtes)

4
ICE 2231/ Arrays, Records, and Pointers

Linear Arrays

ICE 2261

 The number n of elements is called the length or size of the array.
* In general, the length or the number of data elements of the array

can be obtained from the index set by the formula.

Length=UB-LB+1
where UB is the largest index, called the upper bound, and LB is the

smallest index, called the lower bound of the array.

Note that, Length=UB when LB=1.

5
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Linear Arrays: Example

ICE 2261

e

LE 4.1

DATA

1 247

56

429

135

87

= Y T N I

156

(a)

Sl

Let DATA be a 6-eclement linear array of integers such that |
DATA[1]=247 DATA[2]=56 DATA[3]=429 DATAl4]=135 DATA[S] = &7 DATA[6] = 156

Sometimes we will denote such an array by simply writing
DATA: 247, 56, 429, 135, 87, 156

The array DATA is frcquently pictured as in Fig. 4-1(a) or Fig. 4-1(b).

'DATA
247 | 56 | 429 | 135 | 87 | 156
RCTINER T P
. (b)
Fig. 4-1

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

6
ICE 2231/ Arrays, Records, and Pointers

Linear Arrays: Indexing Example

* An automobile company uses an array AUTO to record the number

of automobiles sold each year from 1930 through 1984.

e Rather than beginning the index set with 1, it is more useful to begin

the index set with 1932 so that
AUTO[K]=Number of automobiles sold in the year K,

Then, LB=1932 and UB=1984 of AUTO

Length=UB-LB+1
=1984-1930+1=55
* On implementation, each programming language has its own rules
for declaring arrays. Each such declaration must give, implicitly ,
THREE items of information,
e The NAME of the array,
 The DATA TYPES of the array

© Dr. Md. Golam.Ras-li-llgcg J;\slo[g.ﬁ)t(oég;[)r,o e}:)lt:.] gf ﬁ,ré:%Yl ICE 2231/ Arrays, Records, anc? Pointers

Representation of LA in Memory

ICE 2261
v’ Let LA be a linear array in the memory of the computer.

LOC(LA[K])=address of the element LA[K] of the array LA
v The elements of LA are stored in successive memory cells.

v’ Accordingly, the computer does not need to keep track of
the address of every element of LA, But needs to keep
track only the address of the first element of LA.

v Denoted by

Base(LA)-called the base address of LA

8
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Representation of LA in Memory

ICE 2261
v’ Using the base address of LA, the computer calculates the

address of any element of LA by the following formula:

LOC(LA[K])=Base(LA)+w(K-lower bound)
w-is the number of words per memory cell for the array LA.

v' The time to calculate LOC (LA[K]) is essentially the same
for any value of K.
v' Given any subscript K, one can locate and access the

content of LA[K] without scanning any other element of
LA.

9
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Example: Representation of LA in Memory

ICE 2261

 Consider the array AUTO which records the number of
automobiles sold each year from 1932 through 1984.
 Suppose AUTO appears in memory as pictured below

200

201

202

? AUTO[1932]

203

J

204

3

205

206

> AUTO[1933]

207

208

209

210

L AUTO[1934]

211

© Dr. M

* Here, Base (AUTO)=200, and
* w=4 words per memory cell for AUTO.

LOC (AUTO

LOC (AUTO
LOC (AUTO

1932

1933

1934

)= 200
)= 204
)= 208

 Address of the array element for the vyear
K=1965 can be obtained:

LOC(AUTO[1965])=Base(AUTO)+w(1965-lower bound)

= 200+4(1965-1932)=332
. . LOC(LA[K])=Base(LA)+w(K-lower bound) 10
d. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2231/ Arrays, Records, and Pointers

Can Linear Arrays be indexed?

ICE 2261

A collection A of data elements is said to be indexed if any
element of A, which we shall call A, , can be located and
processed in the time that is independent of K.

* Thisis very important property of linear arrays

11
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Traversing Linear Arrays A: Algorithm

ICE 2261

A is a linear array with LB and UB

Step 1. [Initialize counter] Set K:=LB
Step 2. Repeat Step 3 and 4 while K<=UB [Repeat while loop]

Step 3. [Visit element] Apply PROCESS to A[K].

Step 4. [Increase counter] Set K:=K+1.
[End of Step 2 loop.]

Step 5. Exit.

Step 1. Repeat for K=LB to UB [Repeat for loop]
[Visit element] Apply PROCESS to A[K].
[End of Step 2 loop.]

Step 2. Exit.

12
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Traversing Linear Arrays: Example

ICE 2261

Consider the array AUTO in Example 4.1(b), which records the number of automobiles sold each year from

}:&?rg\rough 1984. Each of the following modules, which carry out the given operation, involves traversing

(a) Find the number NUM of years during which more than 300 automobiles were sold.
1. [Initialization step.] Set NUM:=0),
2. Repeat for K =1932 to 1984;
If AUTO[K] > 300, then: Set NUM:=NUM + 1.
[End of loop.]
3. Retum,

(b) Print each year and the number of automobiles sold in that year.
1. Repeat for K=1932 to 1984:
Write: K, AUTO[K].
[End of loop.)
2. Retumn,

13
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Inserting elements in a Linear Arrays:

ICE 2261

v’ Let A be a collection of data elements in the computer memory.
v’ Inserting refer to the operation of ADDING another element to the

collection.
v’ Inserting an element at the “end” of the linear array can be EASILY

done provided the memory space allocating for the array is large
enough to accommodate the additional element.
v’ Inserting an element in the middle of the array is RELATIVELY

COMPLICATED TASK. NAME NAME

v'On an average, half of the elements must 1 | Brows t [Brown
be moved downward to new locations to : e 2 | Davis
Johnson 3 Ford
accommodate the elements and keep R i e
the order of the other elements. s | Wagner | s | smith
6 6 Wagner
7 7
8 8

(a) (b)

14

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Inserting elements in a LA: Algorithm

ICE 2261

|NSERT(LA, N, K, |TE|V|) [inserts an element ITEM into Kth position in LA]
1. [Initialize counter] Set J:=N

2. Repeat Step 3 and 4 while J>=K.

3. ‘Move Jt element downward.] Set LA[J+1]:=LA[J]

4 Decrease counter] Set J:=J-1.

End of Step 2 loop.]

5. [Insert element.] Set LA[K]:=ITEM.

6. [Reset N.] Set N:=N+1.

/. Exit.

e The elements are moved in reverse order . First LA[N],
then LA[N-1],......and last LA[K]; otherwise data might be
erased.

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Instant Test-1: .

Consider the linear arrays:
XXX (10 : 55),
YYY (-10: 15), and
/77 (25)

a) Find the number of element in each array.
We know Length=UB-LB+1
Accordingly, Length (XXX) =55-10+ 1=46

Length (YYY) = 15-(-10)+1 = 26
Length (ZZZ) = 25-1+1= 25

16
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Instant Test-2:

Consider the linear arrays:
XXX (10 : 65),
YYY (-10: 15), and

777 (25)
b) Suppose Base (XXX) = 300 and w= 4 words per memory cell for XXX.

* Find the address of XXX [15]
XXX [35]
XXX [75]

We know the formula: LOC (XXX[k])= Base (XXX)+w (k-LB)

Hence, LOC (XXX[15])= 300 + 4 (15-10) = 320
LOC (XXX [35])= 300 + 4 (35-10)= 400

AAA [75] is not an element of XXX, since 75 exceeds UB=65
17

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Deleting elements from a Linear Arrays:

v" Deleting refers to the operation of removing one of the elements

from A.
v' Deleting an element at the “end” of the linear array present no

difficulties (EASILY).

ICE 2261

v' But deleting an element somewhere in the middle of the array
would require that each of the subsequent element be moved one

location upward in order to fill-up the array.

00 ~N O Vv a W N

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

NAME

Brown

(a)

@ 9 & v o a ow N

NAME

Brown

Davis

Ford

Johnson

Smith

Wagner

(b)

0 N O wn e W N

NAME

Brown

Davis

Ford

Johnson

Smith

Taylor

Wagner

(c)

00 ~N N e W N

NAME

=

Brown

Ford

Johnson

Smith

Taylor

Wagner

(4)

18
ICE 2231/ Arrays, Records, and Pointers

Deleting elements from a LA: Algorithm

ICE 2261

DELETE(LA, N, K, ITEM)

(This algorithm deletes the Kth element from LA)

1. Set ITEM:=LA[K]

2. Repeat for J=K to N-1:

‘Move J+1th element upward.] Set LA[J]:=LA[J+1]
End of Step 2 loop.]

3. [Reset the number N of element in LA] Set N:=N-1.

4. Exit.

19
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Sorting

ICE 2261
Let A be a list of n numbers. Sorting A refers to the operation of

rearranging the elements of A so they are in increasing order.
i.e.sothat Ala]<A[2]<A[3]<....... <A[N]

For example,
Suppose A originally is the list
8,4,19,2,7,13,5, 16

After sorting, A is the list

2,4,5,7,8,13, 16, 19

20
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Sorting: BUBBLE SORT @

Supposc the following numbers are stored in an array A:
2. 51. 27, 85 66, 23, 13, 57

We apply the bubble sort to the array A. We discuss each pass separately.

= 2261

Pass 1. We have the following comparisons:
(@) Compare A, and A;. Since 32< 51, the list is not altered.
(b) Compare A, and A,. Since 51> 27, interchange 51 and 27 as follows:

3, @@ 85. 66, 23, 13, 57

(c) Compare A, and A,. ~ Since 51 <885, the list is not altered.
(d) Compare A, and A,. Since 85> 66, interchange 85 and66 as follows:

32, 27, 51, 23, 13,

(e) Compare A, and A,. Since 85> 23, interchange 85 and 23 as follows:

32, 21, 9l 66,@ 13;

(f) Compare Ag and A,. Since 85> 13, interchange 85 and 13 to yield:

R, 27,.51, 66, 23, @' 57

.. (g) Compare A, and’A,. Since 85> 57, interchange 85 and 57 to yield:

32; 21, 51, 66, 23, 13, @‘

At the end of the first pass, the largest number ,85 has moved to the last position.

Rest of the number are not sorted. o
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Sorting: BUBBLE SORT ,
Pass 2. @@ SI, 66, 23, 13, 57, 85 ’

27, 33, 51, @3)(es) 13, 57, w5 |
27, 33.;-351. .23, 57 B8 L
v S ol | P Q@ 85

At the end of Pass 2, the second largest number, 66, has moved its way down to the next-to-last positi
Pass3. 27, 33, @ 13, 57, 66, 85

27, 33, 23, (13, @ 57. 66, 85

Pass 4. 27. @ 13 51, 57. 66, 85
27. 23, 57. 66, 85

Pass . @ 13 33 51, 57, 66, 85
@ 33, S1. S7, 66, 85

Pass 6. @@ 27, 3, 51, 5.7 66 &

6 actually has two comparisons, A, with A, and A, and A,. The second comparison does
Pass 6 actud : . ks
nge. ;
B ‘mct:‘:’agtcd with A,. Since 13 <23, no interchange takes p\ace
Pass 7. Finally, A 15 ¢

_1 fter the seventh pass. (Observe_that in thls examble_ the list wac act

Since the list has 8 elements, it is sorted after the seventh pass.

22
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Bubble Sort: Algorithm
BUBBLE (DATA, N) b .

(Here DATA is an array with N elements. This algorithm sorts the elements in DATA)
Step 1. Repeat Steps 2 and 3 for K=1 to N-1.
Step 2. Set PTR:=1 [Initialize pass pointer PTR]
Step 3. Repeat while PTR<=N-K [Execute pass.]

(a) If DATA[PTR] > DATA[PTR+1], then:

Interchange Data[PTR] and DATA[PTR+1].
[End of IF Structure]
(b) Set PTR:=PTR+1.
[End of inner loop.]
[End of Step 1. outer loop.]

Step 4. Exit. .

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Complexity of BUBBLE SORT

ICE 2261
* Traditionally, the time for this sorting algorithm is measured in

terms of the number of comparisons.

e The number f(n) of comparisons in the bubble sort is easily
computed.

* Specifically, there are n-1 comparisons during the first pass, which
placed the largest element to the last position; there are n-2
comparisons in the second step, which placed the second largest

element in the next-to-the last position, and so on. Thus.
F(n)=(n-1)+(n-2)+....+2+1
=n(n-1)/2=n2/2+0(n)
=0(n?)

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Searching

ICE 2261

v’ Searching refers to the operation of finding the location LOC of ITEM

in Data, or printing some message that ITEM does not appear there.

v The search is said to be successful if ITEM does appear in Data and
unsuccessful otherwise.

v’ There are many different searching algorithms. The algorithm that
one chooses generally depends on the way the information is DATA is
organized.

v' A simple searching algorithm: Linear Search Algorithm

v The well known algorithm: Binary search Algorithm

25
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Linear Search Algorithm

v’ Suppose DATA is a linear array with n elements. Given no oHamn

information about DATA.
v Simple way to search for a given ITEM in DATA is to compare ITEM

with each element of DATA one by one.

v’ Suppose we want to know whether Jhon appears in the array or not.

v’ Again, Suppose, we want to know whether Moon appears in the

array or not. Adams Adams Adams
Charlie Charlie Charlie

Rasha Rasha Rasha

Moon Moon Moon

Rock Rock Rock

Smith Smith Smith

Jhon Moon

© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE|, RU ICE 2231/ Arrays, Records, anzs Pointers

Linear Search Algorithm: Example

ICE 2261

list [65]20]10[55]32]12[50[99 Step 4

search element (12) is compared with next element (55)
search element 12

Step 1: list |65|20]10]55]32({12|50|99
search element (12) is compared with first element (65) 12
Both are not matching. So move to next element
list [65]20]10[55]32]12]50[99 Step 5:
12 search element (12) is compared with next element (32)
Both are not matching. So move to next element
Step 2: list [65]/20]10|55|32]12|50|99
search element (12) is compared with next element (20) 12
Both are not matching. So move to next element
list [65]20]10[55]32[12]50]99 Step 6:
12 search element (12) is compared with next element (12)
Both are not matching. So move to next element
Step 3: list |65|20]10|55|32{12|50|99

search element (12) is compared with next element (10)

Both are matching. So we stop comparing and display

list |65/20}10]55|32|12|50|99 element found at index 5.
12

Both are not matching. So move to next element

27
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Searching: Linear Search Algorithm

1111111

LLLLLLL

LINEAR (DATA, N, ITEM, LOC)
Step 1. [Insert ITEM at the end of DATA] Set DATA[N+1]:=ITEM

Step 2. [Initialize counter] Set LOC:=1.

Step 3. [Search for ITEM.]

Repeat while Data [LOC]+# ITEM:
Set LOC:=LOC+1.
[End of loop.]
Step 4. [Successful?] IF LOC=N+1, then: Set LOC:=0;
Step 5. Exit.

28
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

Linear Search Algorithm: Complexity

v' The complexity of this algorithm is measured by the number f(1s 22t
comparison required to find ITEM where DATA contains n elements.
v" Two important cases to consider are:
v" The average case, and
v The worst case
The running time of the average case uses the probabilistic notation of
expectation.
v’ Suppose, p, is the probability that ITEM appears in DATA[K], and
v’ suppose, q is the probability that ITEM does not appear in DATA.
v’ Since, the algorithm uses k comparisons when ITEM appears in DATA
[K], the average number of comparisons is given by

f(n)=1.p,+2.p,+........ n.p,+(n+1)q
v' In particular, q is very small, and ITEM appears with equl probability in

each element of DATA. Then g= 0 and each p=1/n.

v' Accordinglyf(n) = 1.111: 2.711: B.i: n.% (n+1).0
v = (14+2+...4n).= = nintld) 1_ntl

n 2 n 2 -
ICE 2231/ Arrays, Records, and Pointers

Linear Search Algorithm: Complexity

ICE 2261

The worst case occurs when one must search through the entire array
DATA, when ITEM does not appear in DATA.
Algorithm Requires f(n)= n+1 comparison.

Thus, in the worst case, the running time is proportional to n

30
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU ICE 2231/ Arrays, Records, and Pointers

