
Department of Information and Communication Engineering (ICE)
University of Rajshahi, Rajshahi-6205, Bangladesh

ICE-2231
(Data Structures and Algorithms)

Lecture on
Chapter-2: Arrays, Records, Pointers

By

Dr. M. Golam Rashed
(golamrashed@ru.ac.bd)

1

ICE 2261

Data structures are classified as either Linear or Nonlinear.

• A data structure is said to be Linear if its elements forms a sequence, or
a linear list.

• There are TWO basic ways of representing such linear structures in
memory.

• One ways is to have the linear relationship between the
elements represented by means of sequential memory locations.
(For example, ARRAYS).

• The other ways is to have the linear relationship between the
elements represented by mean of pointers or links. (For
example, linked lists)

• Nonlinear data structures (For example, tress and graphs)
discussed later.

2
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Opera&ons on Linear Structure
The operations one normally performed on any linear
structure include the following:

• Traversing-Processing each element in the list
• Search – Finding the location of the element with a given

value or the record with a given key.
• Insertion-Adding a new element to the list.

• Deletion-Removing an element from the list.

• Sorting-Arranging the element in some type of order.

• Merging-Combining two list into a single list.
3

ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Linear Arrays
A linear array is a list of finite number n of HOMOGENEOUS data
elements (i.e., data elements of the same type) such that:
• The elements of the array are referenced respec=vely by an index

set consis=ng of n consecu=ve numbers.

• The elements of the array are stored respec=vely in successive

memory loca=ons.

4
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Linear Arrays

• The number n of elements is called the length or size of the array.

• In general, the length or the number of data elements of the array

can be obtained from the index set by the formula.

Length=UB-LB+1

where UB is the largest index, called the upper bound, and LB is the

smallest index, called the lower bound of the array.

Note that, Length=UB when LB=1.

5
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Linear Arrays: Example

6
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Linear Arrays: Indexing Example
• An automobile company uses an array AUTO to record the number

of automobiles sold each year from 1930 through 1984.

• Rather than beginning the index set with 1, it is more useful to begin

the index set with 1932 so that

AUTO[K]=Number of automobiles sold in the year K,

Then, LB=1932 and UB=1984 of AUTO

Length=UB-LB+1

=1984-1930+1=55

• On implementaRon, each programming language has its own rules

for declaring arrays. Each such declaraRon must give, implicitly ,

THREE items of informaRon,

• The NAME of the array,

• The DATA TYPES of the array

• The INDEX SET of the array 7
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Representa)on of LA in Memory
ü Let LA be a linear array in the memory of the computer.

LOC(LA[K])=address of the element LA[K] of the array LA

ü The elements of LA are stored in successive memory cells.

ü Accordingly, the computer does not need to keep track of
the address of every element of LA, But needs to keep
track only the address of the first element of LA.

üDenoted by

Base(LA)-called the base address of LA

8
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Representa)on of LA in Memory

üUsing the base address of LA, the computer calculates the

address of any element of LA by the following formula:

LOC(LA[K])=Base(LA)+w(K-lower bound)

w-is the number of words per memory cell for the array LA.

ü The)me to calculate LOC (LA[K]) is essen)ally the same

for any value of K.

ü Given any subscript K, one can locate and access the

content of LA[K] without scanning any other element of

LA.

9

ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Example: Representa/on of LA in Memory

• Consider the array AUTO which records the number of

automobiles sold each year from 1932 through 1984.

• Suppose AUTO appears in memory as pictured below

• Here, Base (AUTO)=200, and

• w=4 words per memory cell for AUTO.

LOC (AUTO[1932])= ?200

LOC (AUTO[1933])= ?204

LOC (AUTO[1934])= ?208

• Address of the array element for the year

K=1965 can be obtained:

LOC(AUTO[1965])=Base(AUTO)+w(1965-lower bound)
= 200+4(1965-1932)=332

LOC(LA[K])=Base(LA)+w(K-lower bound)
10

ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Can Linear Arrays be indexed?

• A collec3on A of data elements is said to be indexed if any

element of A, which we shall call Ak , can be located and

processed in the 3me that is independent of K.

• This is very important property of linear arrays

11
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Traversing Linear Arrays A: Algorithm

A is a linear array with LB and UB

Step 1. [Ini:alize counter] Set K:=LB
Step 2. Repeat Step 3 and 4 while K<=UB [Repeat while loop]
Step 3. [Visit element] Apply PROCESS to A[K].
Step 4. [Increase counter] Set K:=K+1.

[End of Step 2 loop.]
Step 5. Exit.

Step 1. Repeat for K=LB to UB [Repeat for loop]
[Visit element] Apply PROCESS to A[K].
[End of Step 2 loop.]

Step 2. Exit.

12
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Traversing Linear Arrays: Example

13
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Inser&ng elements in a Linear Arrays:
ü Let A be a collec&on of data elements in the computer memory.
ü Inser&ng refer to the opera&on of ADDING another element to the

collec&on.
ü Inser&ng an element at the “end” of the linear array can be EASILY

done provided the memory space alloca&ng for the array is large
enough to accommodate the addi&onal element.

ü Inser&ng an element in the middle of the array is RELATIVELY
COMPLICATED TASK.

üOn an average, half of the elements must
be moved downward to new loca&ons to
accommodate the elements and keep
the order of the other elements.

14
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Inser&ng elements in a LA: Algorithm
INSERT(LA, N, K, ITEM) [inserts an element ITEM into Kth posi7on in LA]
1. [Ini&alize counter] Set J:=N
2. Repeat Step 3 and 4 while J>=K.
3. [Move Jth element downward.] Set LA[J+1]:=LA[J]
4. [Decrease counter] Set J:=J-1.

[End of Step 2 loop.]
5. [Insert element.] Set LA[K]:=ITEM.
6. [Reset N.] Set N:=N+1.
7. Exit.

• The elements are moved in reverse order . First LA[N],
then LA[N-1],…...and last LA[K]; otherwise data might be
erased.

15
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261Instant Test-1:
Consider the linear arrays:

XXX (10 : 55),
YYY (-10 : 15), and

ZZZ (25)

a) Find the number of element in each array.

We know Length=UB-LB+1

Accordingly, Length (XXX) = 55 - 10 + 1= 46
Length (YYY) = 15-(-10)+1 = 26
Length (ZZZ) = 25-1+1= 25

16
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Instant Test-2:
Consider the linear arrays:

XXX (10 : 65),
YYY (-10 : 15), and

ZZZ (25)
b) Suppose Base (XXX) = 300 and w= 4 words per memory cell for XXX.

• Find the address of XXX [15]
XXX [35]
XXX [75]

We know the formula: LOC (XXX[k])= Base (XXX)+w (k-LB)

Hence, LOC (XXX[15])= 300 + 4 (15-10) = 320
LOC (XXX [35])= 300 + 4 (35-10)= 400

AAA [75] is not an element of XXX, since 75 exceeds UB=65
17

ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Dele$ng elements from a Linear Arrays:
ü Dele$ng refers to the opera$on of removing one of the elements

from A.
ü Dele$ng an element at the “end” of the linear array present no

difficul$es (EASILY).
ü But dele$ng an element somewhere in the middle of the array

would require that each of the subsequent element be moved one
loca$on upward in order to fill-up the array.

18
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Dele$ng elements from a LA: Algorithm

DELETE(LA, N, K, ITEM)
(This algorithm deletes the Kth element from LA)

1. Set ITEM:=LA[K]

2. Repeat for J=K to N-1:

[Move J+1th element upward.] Set LA[J]:=LA[J+1]

[End of Step 2 loop.]

3. [Reset the number N of element in LA] Set N:=N-1.

4. Exit.

19
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Sor$ng
Let A be a list of n numbers. Sor$ng A refers to the opera$on of
rearranging the elements of A so they are in increasing order.

i.e. so that A[a]<A[2]<A[3]<…....<A[N]

For example,
Suppose A originally is the list

8, 4, 19, 2, 7, 13, 5, 16

AKer sor$ng, A is the list

2, 4, 5, 7, 8, 13, 16, 19

20
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261

Sor$ng: BUBBLE SORT

At the end of the first pass, the largest number ,85 has moved to the last posi?on.
Rest of the number are not sorted.

21
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Sor$ng: BUBBLE SORT

Since the list has 8 elements, it is sorted a<er the seventh pass.
22

ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261

Bubble Sort: Algorithm
BUBBLE (DATA, N)
(Here DATA is an array with N elements. This algorithm sorts the elements in DATA)

Step 1. Repeat Steps 2 and 3 for K=1 to N-1.

Step 2. Set PTR:=1 [IniJalize pass pointer PTR]

Step 3. Repeat while PTR<=N-K [Execute pass.]

(a) If DATA[PTR] > DATA[PTR+1], then:

Interchange Data[PTR] and DATA[PTR+1].

[End of IF Structure]

(b) Set PTR:=PTR+1.

[End of inner loop.]

[End of Step 1. outer loop.]

Step 4. Exit.
23

ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Complexity of BUBBLE SORT
• Tradi8onally, the 8me for this sor8ng algorithm is measured in

terms of the number of comparisons.

• The number f(n) of comparisons in the bubble sort is easily

computed.

• Specifically, there are n-1 comparisons during the first pass, which

placed the largest element to the last posi8on; there are n-2

comparisons in the second step, which placed the second largest

element in the next-to-the last posi8on, and so on. Thus.

F(n)=(n-1)+(n-2)+….+2+1
=n(n-1)/2=n2/2+O(n)

=O(n2)
24

ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Searching
üSearching refers to the opera/on of finding the loca/on LOC of ITEM

in Data, or prin/ng some message that ITEM does not appear there.

üThe search is said to be successful if ITEM does appear in Data and

unsuccessful otherwise.

üThere are many different searching algorithms. The algorithm that

one chooses generally depends on the way the informa/on is DATA is

organized.

üA simple searching algorithm: Linear Search Algorithm

ü The well known algorithm: Binary search Algorithm

25
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261

Linear Search Algorithm

Adams
Charlie
Rasha
Moon
Rock
Smith

Adams
Charlie
Rasha
Moon
Rock
Smith
Jhon

Adams

Charlie
Rasha
Moon
Rock
Smith
Moon

ü Suppose DATA is a linear array with n elements. Given no other

informaAon about DATA.

ü Simple way to search for a given ITEM in DATA is to compare ITEM

with each element of DATA one by one.

ü Suppose we want to know whether Jhon appears in the array or not.

ü Again, Suppose, we want to know whether Moon appears in the

array or not.

26
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Linear Search Algorithm: Example

27
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261
Searching: Linear Search Algorithm
LINEAR (DATA, N, ITEM, LOC)

Step 1. [Insert ITEM at the end of DATA] Set DATA[N+1]:=ITEM

Step 2. [IniCalize counter] Set LOC:=1.

Step 3. [Search for ITEM.]

Repeat while Data [LOC]≠ "#$%:
Set LOC:=LOC+1.

[End of loop.]

Step 4. [Successful?] IF LOC=N+1, then: Set LOC:=0;

Step 5. Exit.

28
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261

Linear Search Algorithm: Complexity
ü The complexity of this algorithm is measured by the number f(n) of

comparison required to find ITEM where DATA contains n elements.
ü Two important cases to consider are:

ü The average case, and
ü The worst case

The running Gme of the average case uses the probabilisGc notaGon of
expectaGon.
ü Suppose, pk is the probability that ITEM appears in DATA[K], and
ü suppose, q is the probability that ITEM does not appear in DATA.
ü Since, the algorithm uses k comparisons when ITEM appears in DATA

[K], the average number of comparisons is given by
f(n)= 1.p1+2.p2+….....n.pn+(n+1)q

ü In parGcular, q is very small, and ITEM appears with equl probability in
each element of DATA. Then q≈ 0 and each pi=1/n.

ü Accordingly# $ = 1. ()+ 2. ()+ 3. ()+....... n. ()+ $ + 1 . 0
ü = (1+2+...+n). () =

)()/()
1 . () =

)/(
1

29
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

ICE 2261

Linear Search Algorithm: Complexity

The worst case occurs when one must search through the en:re array
DATA, when ITEM does not appear in DATA.

Algorithm Requires f(n)= n+1 comparison.

Thus, in the worst case, the running :me is propor:onal to n

30
ICE 2231/ Arrays, Records, and Pointers© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

