ICE-2231
 (Data Structures and Algorithms)

Lecture on
 Chapter-2: Arrays, Records, Pointers

By
Dr. M. Golam Rashed

(golamrashed@ru.ac.bd)

Department of Information and Communication Engineering (ICE) University of Rajshahi, Rajshahi-6205, Bangladesh

ICE 2261

Data structures are classified as either Linear or Nonlinear.

- A data structure is said to be Linear if its elements forms a sequence, or a linear list.
- There are TWO basic ways of representing such linear structures in memory.
- One ways is to have the linear relationship between the elements represented by means of sequential memory locations. (For example, ARRAYS).
- The other ways is to have the linear relationship between the elements represented by mean of pointers or links. (For example, linked lists)
- Nonlinear data structures (For example, tress and graphs) discussed later.

Operations on Linear Structure

The operations one normally performed on any linear structure include the following:

- Traversing-Processing each element in the list
- Search - Finding the location of the element with a given value or the record with a given key.
- Insertion-Adding a new element to the list.
- Deletion-Removing an element from the list.
- Sorting-Arranging the element in some type of order.
- Merging-Combining two list into a single list.

Linear Arrays

ICE 2261
A linear array is a list of finite number n of HOMOGENEOUS data elements (i.e., data elements of the same type) such that:

- The elements of the array are referenced respectively by an index set consisting of n consecutive numbers.
- The elements of the array are stored respectively in successive memory locations.

Linear Arrays

- The number n of elements is called the length or size of the array.
- In general, the length or the number of data elements of the array can be obtained from the index set by the formula.
Length=UB-LB+1
where UB is the largest index, called the upper bound, and LB is the smallest index, called the lower bound of the array.

Note that, Length=UB when LB=1.

Linear Arrays: Example

AMPLE 4.1

Let DATA be a 6-element linear array of integers such that
$\operatorname{DATA}[1]=247 \quad \operatorname{DATA}[2]=56 \quad \operatorname{DATA}[3]=429 \quad \operatorname{DATA}[4]=135 \quad \operatorname{DATA}[5]=87 \quad$ DATA $[6]=156$
Sometimes we will denote such an array by simply writing

$$
\text { DATA: } \quad 247,56,429,135,87,156
$$

The array DATA is frequently pictured as in Fig. 4-1(a) or Fig. 4-1(b).

	DATA
1	247
2	56
3	429
4	135
5	87
6	156

(a)

(b)

Fig. 4-1

Linear Arrays: Indexing Example

ICE 2261

- An automobile company uses an array AUTO to record the numbiber of automobiles sold each year from 1930 through 1984.
- Rather than beginning the index set with 1 , it is more useful to begin the index set with 1932 so that

AUTO[K]=Number of automobiles sold in the year K,
Then, LB=1932 and UB=1984 of AUTO

$$
\begin{gathered}
\text { Length=UB-LB+1 } \\
=1984-1930+1=55
\end{gathered}
$$

- On implementation, each programming language has its own rules for declaring arrays. Each such declaration must give, implicitly , THREE items of information,
- The NAME of the array,
- The DATA TYPES of the array

Representation of LA in Memory

ICE 2261
\checkmark Let LA be a linear array in the memory of the computer.

$\operatorname{LOC}(\mathrm{LA}[\mathrm{K}])=$ address of the element $\mathrm{LA}[\mathrm{K}]$ of the array LA

\checkmark The elements of LA are stored in successive memory cells.
\checkmark Accordingly, the computer does not need to keep track of the address of every element of LA, But needs to keep track only the address of the first element of $L A$.
\checkmark Denoted by
Base(LA)-called the base address of LA

Representation of LA in Memory

ICE 2261
\checkmark Using the base address of LA, the computer calculates the address of any element of LA by the following formula:
LOC(LA[K])=Base(LA)+w(K-lower bound)
w-is the number of words per memory cell for the array LA.
\checkmark The time to calculate LOC (LA[K]) is essentially the same for any value of K.
\checkmark Given any subscript K, one can locate and access the content of LA[K] without scanning any other element of LA.

Example: Representation of LA in Memory

ICE 2261

- Consider the array AUTO which records the number of automobiles sold each year from 1932 through 1984.
- Suppose AUTO appears in memory as pictured below

Can Linear Arrays be indexed?

- A collection A of data elements is said to be indexed if any element of A, which we shall call A_{k}, can be located and processed in the time that is independent of K .
- This is very important property of linear arrays

Traversing Linear Arrays A: Algorithm

ICE 2261

A is a linear array with LB and UB

```
Step 1. [Initialize counter] Set K:=LB
Step 2. Repeat Step 3 and 4 while K<=UB [Repeat while loop][Visit element] Apply PROCESS to A[K].[Increase counter] Set K:=K+1.
[End of Step 2 loop.]
Step 5. Exit.
```

Step 1. Repeat for K=LB to UB [Repeat for loop]
[Visit element] Apply PROCESS to A[K]. [End of Step 2 loop.]
Step 2. Exit.

Traversing Linear Arrays: Example

ICE 2261

Consider the array AUTO in Example $4.1(b)$, which records the number of automobiles sold each year from 1932 through 1984. Each of the following modules, which carry out the given operation, involves traversing AUTO.
(a) Find the number NUM of years during which more than 300 automobiles were sold.

1. [Initialization step.] Set NUM $:=0$.
2. Repeat for $K=1932$ to 1984:

If AUTO[K]>300, then: Set NUM: $=\mathrm{NUM}+1$.
[End of loop.]
3. Return.
(b) Print each year and the number of automobiles sold in that year.

1. Repeat for $\mathrm{K}=1932$ to 1984 :

Write: K, AUTO[K].
[End of loop.]
2. Return.

Inserting elements in a Linear Arrays:

ICE 2261
\checkmark Let A be a collection of data elements in the computer memory.
\checkmark Inserting refer to the operation of ADDING another element to the collection.
\checkmark Inserting an element at the "end" of the linear array can be EASILY done provided the memory space allocating for the array is large enough to accommodate the additional element.
\checkmark Inserting an element in the middle of the array is RELATIVELY COMPLICATED TASK.
\checkmark On an average, half of the elements must be moved downward to new locations to accommodate the elements and keep the order of the other elements.

Inserting elements in a LA: Algorithm

INSERT(LA, N, K, ITEM) [inserts an element ITEM into Kth position in LA]

1. [Initialize counter] Set J:=N
2. Repeat Step 3 and 4 while J>=K.
3. [Move $J^{\text {th }}$ element downward.] Set LA[J+1]:=LA[J]
4. [Decrease counter] Set J:=J-1.
[End of Step 2 loop.]
5. [Insert element.] Set LA[K]:=ITEM.
6. [Reset N.] Set $N:=N+1$.
7. Exit.

- The elements are moved in reverse order . First LA[N], then LA[N-1],......and last LA[K]; otherwise data might be erased.

Instant Test-1:

Consider the linear arrays:

$$
\begin{aligned}
& \text { XXX (10:55), } \\
& \text { YYY (-10 : 15), and } \\
& \quad \text { ZZZ (25) }
\end{aligned}
$$

a) Find the number of element in each array.

We know Length=UB-LB+1

Accordingly, Length $(X X X)=55-10+1=46$
Length (YYY) $=15-(-10)+1=26$
Length (ZZZ) $=25-1+1=25$

Instant Test-2:

Consider the linear arrays:

$$
\begin{aligned}
& \text { XXX (10: 65), } \\
& \text { YYY (-10 : 15), and } \\
& \text { ZZZ (25) }
\end{aligned}
$$

b) Suppose Base $(X X X)=300$ and $w=4$ words per memory cell for XXX.

- Find the address of XXX [15]

XXX [35]
XXX [75]
We know the formula: LOC (XXX[k])= Base (XXX)+w (k-LB)
Hence, LOC (XXX[15])= $300+4(15-10)=320$
LOC (XXX [35]) $=300+4(35-10)=400$
AAA [75] is not an element of $X X X$, since 75 exceeds UB=65

Deleting elements from a Linear Arrays:

ICE 2261
\checkmark Deleting refers to the operation of removing one of the elements from A.
Deleting an element at the "end" of the linear array present no difficulties (EASILY).
But deleting an element somewhere in the middle of the array would require that each of the subsequent element be moved one location upward in order to fill-up the array.

	NAME
1	Brown
2	Davis
3	Johnson
4	Smith
5	Wagner
6	
7	
8	

(a)

(b)

(c)

(d)

Deleting elements from a LA: Algorithm

ICE 2261

DELETE(LA, N, K, ITEM)

(This algorithm deletes the Kth element from LA)

1. Set ITEM:=LA[K]
2. Repeat for $\mathrm{J}=\mathrm{K}$ to $\mathrm{N}-1$:
[Move J+1 ${ }^{\text {th }}$ element upward.] Set LA[J]:=LA[J+1]
[End of Step 2 loop.]
3. [Reset the number N of element in LA] Set $\mathrm{N}:=\mathrm{N}-1$.
4. Exit.

Sorting

ICE 2261
Let A be a list of n numbers. Sorting A refers to the operation of rearranging the elements of A so they are in increasing order.
i.e. so that $\quad A[a]<A[2]<A[3]<\ldots \ldots . .<A[N]$

For example,
Suppose A originally is the list

$$
8,4,19,2,7,13,5,16
$$

After sorting, A is the list
$2,4,5,7,8,13,16,19$

Sorting: BUBBLE SORT

- Suppose the following numbers are stored in an array A :

$$
32,51,27,85,66,23,13,57
$$

We apply the bubble sort to the array \mathbf{A}. We discuss each pass separately.
Pass 1. We have the following comparisons:
(a) Compare A_{1} and A_{2}. Since $32<51$, the list is not altered.
(b) Compare A_{2} and A_{3}. Since $51>27$, interchange 51 and 27 as follows:

$$
32, \text { (27.) } 51 .) 85,66,23,13,57
$$

(c) Compare A_{3} and A_{4}. Since $51<85$, the list is not altered.
(d) Compare A_{4} and A_{5}. Since $85>66$, interchange 85 and 66 as follows:

$$
32,27,51,66.85,23,13,57
$$

(e) Compare A_{5} and A_{6}. Since $85>23$, interchange 85 and 23 as follows:

$$
32,27,51,66,23.85 .13,57
$$

(f) Compare A_{6} and A_{7}. Since $85>13$, interchange 85 and 13 to yield:

$$
32,27, .51,66,23,13,85.57
$$

(g) Compare A_{9}, and A_{8}. Since $85>57$, interchange 85 and 57 to yield:

$$
32,27,51,66,23,13,57,85
$$

At the end of the first pass, the largest number ,85 has moved to the last position. Rest of the number are not sorted.
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Sorting: BUBBLE SORT

Pass 2. 27. (32. $51,66,23,13,57,85$
$27,33,51$, (23. 66. $13,57,85$
$27,33,51,23,13,66,57,85$
$27,33,51,23,13,57,66,85$

At the end of Pass 2, the second largest number, 66, has moved its way down to the next-to-last positic
Pass 3. 27, 33 , 23. 51. $13,57,66,85$
$27,33,23,(13) 51.57,66,$.
Pass 4. 27, 23. (33. $13,51,57,66,85$
27, 23, (13. (33.) $51,57,66,85$
Pass 5. 23. 27. $13,33,51,57,66,85$
23, (13.) 27. $33,51,57,66,85$
Pass 6. 13. 23. $27,33,51,57,66,85$
Pass 6 actually has two comparisons, A_{1} with A_{2} and A_{2} and A_{3}. The second comparison does involve an interchange.
Pass 7. Finally, A_{1} is compared with \mathbf{A}_{2}. Since $13<23$, no interchange takes place.

Since the list has 8 elements, it is sorted after the seventh pass.

Bubble Sort: Algorithm BUBBLE (DATA, N)

ICE 2261
(Here DATA is an array with N elements. This algorithm sorts the elements in DATA)
Step 1. Repeat Steps 2 and 3 for $\mathrm{K}=1$ to $\mathrm{N}-1$.
Step 2. Set PTR:=1 [Initialize pass pointer PTR]
Step 3. Repeat while $\mathrm{PTR}<=\mathrm{N}-\mathrm{K}$ [Execute pass.]
(a) If DATA[PTR] > DATA[PTR +1$]$, then:
Interchange Data[PTR] and DATA[PTR+1].
[End of IF Structure]
(b) Set PTR:=PTR+1.
[End of inner loop.]
[End of Step 1. outer loop.]
Step 4. Exit.
© Dr. Md. Golam Rashed, Assoc. Professor, Dept. of ICE, RU

Complexity of BUBBLE SORT

- Traditionally, the time for this sorting algorithm is measured in terms of the number of comparisons.
- The number $f(n)$ of comparisons in the bubble sort is easily computed.
- Specifically, there are n-1 comparisons during the first pass, which placed the largest element to the last position; there are $\mathrm{n}-2$ comparisons in the second step, which placed the second largest element in the next-to-the last position, and so on. Thus.

$$
\begin{gathered}
\mathrm{F}(\mathrm{n})=(\mathrm{n}-1)+(\mathrm{n}-2)+\ldots+2+1 \\
=\mathrm{n}(\mathrm{n}-1) / 2=\mathrm{n}^{2} / 2+\mathrm{O}(\mathrm{n}) \\
=0\left(\mathrm{n}^{2}\right)
\end{gathered}
$$

Searching

\checkmark Searching refers to the operation of finding the location LOC of ITEM in Data, or printing some message that ITEM does not appear there.
\checkmark The search is said to be successful if ITEM does appear in Data and unsuccessful otherwise.
\checkmark There are many different searching algorithms. The algorithm that one chooses generally depends on the way the information is DATA is organized.
\checkmark A simple searching algorithm: Linear Search Algorithm
\checkmark The well known algorithm: Binary search Algorithm

Linear Search Algorithm

\checkmark Suppose DATA is a linear array with n elements. Given no othaga information about DATA.
\checkmark Simple way to search for a given ITEM in DATA is to compare ITEM with each element of DATA one by one.
\checkmark Suppose we want to know whether Jhon appears in the array or not.
\checkmark Again, Suppose, we want to know whether Moon appears in the

Linear Search Algorithm: Example

ICE 2261

search element 12

Step 1:

search element (12) is compared with first element (65)

12
Both are not matching. So move to next element

Step 2:

search element (12) is compared with next element (20)

$$
12
$$

Both are not matching. So move to next element

Step 3:

search element (12) is compared with next element (10)

12
Both are not matching. So move to next element

Step 4:

search element (12) is compared with next element (55)

12

Both are not matching. So move to next element
Step 5:
search element (12) is compared with next element (32)

12
Both are not matching. So move to next element
Step 6:
search element (12) is compared with next element (12)

12
Both are matching. So we stop comparing and display element found at index 5 .

Searching: Linear Search Algorithm

LINEAR (DATA, N, ITEM, LOC)

Step 1. [Insert ITEM at the end of DATA] Set DATA[$\mathrm{N}+1$]:=ITEM
Step 2. [Initialize counter] Set LOC:=1.
Step 3. [Search for ITEM.]
Repeat while Data [LOC] $=$ ITEM: Set LOC:=LOC+1.
[End of loop.]
Step 4. [Successful?] IF LOC=N+1, then: Set LOC:=0;
Step 5. Exit.

Linear Search Algorithm: Complexity

\checkmark The complexity of this algorithm is measured by the number $f(198)$ zefi comparison required to find ITEM where DATA contains n elements.
\checkmark Two important cases to consider are:
\checkmark The average case, and
The worst case
The running time of the average case uses the probabilistic notation of expectation.
\checkmark Suppose, p_{k} is the probability that ITEM appears in DATA[K], and
\checkmark suppose, q is the probability that ITEM does not appear in DATA.
\checkmark Since, the algorithm uses k comparisons when ITEM appears in DATA [K], the average number of comparisons is given by

$$
f(n)=1 \cdot p_{1}+2 \cdot p_{2}+\ldots n \cdot p_{n}+(n+1) q
$$

\checkmark In particular, q is very small, and ITEM appears with equl probability in each element of DATA. Then $q \approx 0$ and each $p_{i}=1 / n$.
\checkmark Accordingly $f(n)=1 \cdot \frac{1}{n}+2 \cdot \frac{1}{n}+3 \cdot \frac{1}{n}+\ldots \ldots . . \mathrm{n} \cdot \frac{1}{n}+(n+1) \cdot 0$
$=(1+2+\ldots+n) \cdot \frac{1}{n}=\frac{n(n+1)}{2} \cdot \frac{1}{n}=\frac{n+1}{2}$

Linear Search Algorithm: Complexity

ICE 2261
The worst case occurs when one must search through the entire array DATA, when ITEM does not appear in DATA.

Algorithm Requires $f(n)=n+1$ comparison.

Thus, in the worst case, the running time is proportional to n

