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Chapter-7

General principles of excavation design

Mining excavations are basically of two types- service openings and production
openings.

Service openings — Service openings include mine access, ore haulage drive,
airway, crusher chambers and underground workshop space.

They are characterized by a duty life approaching the mining life of the orebody,
need to assure and maintain at low cost over a relatively long operational life.

Production openings —These openings include ore sources, stopes, and related
excavations such as drill headings, stope access and ore extraction and service
ways.

Mine production openings have a temporary function in operation and is
necessary to assure control of around excavation boundary only for the life of
stope (as short as a few months).




general design methodology for rock engineering (after Bieniawski, 1993
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Z.one of Influence

The zone of influence is a domain of significant disturbance of the pre-mining
stress field by an excavation. Depends on excavation shape and pre-mining
stresses. Stress distribution around a circular openings (Kirsch equations).
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Hydrostatic stress case:-
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Openings of the different radius

Genera rule: openings lying outside one another’s zones of influence can be
designed by ignoring the presence of all others.

Boundary stresses around II can be obtained by calculating the state of stress
at the center of Il which is adopted as the far-field stresses in the Kirsch
equations, prior to its excavation.
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Elliptic opening

General shapes of openings can be represented by ellipses inscribed in the
opening cross sections. Zone of influence of an elliptic excavation-

W, = H[Aa|q(q + 2) — K3 + 2¢)[]"/? 'imr KT

Or )

W, = Hla fACK + q2) + Kq?}]""2 v —w—|
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where W and H are width and height Wit

footwall .
access zone of

drives influence

of the elliptical excavation,
q=W/H, A=100/2c and a =1,
If K<1, and a =1/K, if K>1




Effect of planes of weakness on elastic stress distribution

Elastic analysis for the excavations with discontinuities
- In some cases, provides a perfectly valid basis for design
- or a basis for judgment of engineering significance of a discontinuity.

D )

Intact rock

Basic assumption of discontinuities
- Zero tensile strength

- Non-dilatant in shear

- Shear strength follows

T=0, tan ¢

Heavily jointed rock mass

Case 1: Horizontal discontinuity passing through the opening center

- 0,5= 0 for all r at 8 = O0: no slip, o,, and ogq are principal stresses.

- The plane of weakness (discontinuity) has no effect on the elastic stress

distribution.
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Case 2: Vertical discontinuity passing through the opening center

- The possibility of separation on the plane of weakness arises if tensile stress
can develop in the crown of the opening, 1.e. 1f K<1/3.

- If K > 1/3, the elastic stress distribution is unaltered by either slip or
separation. 0,5= 0 for all r at 8 = 90: no slip, o, and o44 are principal stresses.
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Case 3: Horizontal discontinuity passing through the opening

- Normal & shear stresses at the intersections on boundary

- 1 r l ®)

plane of
weakness Thy

O, = OggCOS2 0
T=045iN B cosO

=0, tan ¢ (slip occurs)
—> OggSin B cos B = oggcos?Btand

tan6=tan¢or099%=0 il

(il

- Intersection regions are either de-stressed or at confining stress.

- Slip occurs when 8 = ¢ or 644=0
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Case 4: Arbitrary discontinuity passing through the opening center

- Normal & shear stresses on the weak plane

P @ S
O, = Ogo =3 1.5(1 + TZ) o
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T= O're=3 05(1 + - F)

Slip does not occur if ¢ > 19.6°

plane of
weakness

Case 5: Horizontal discontinuity not intersecting the opening

- Normal & shear stresses on the weak plane
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- Slip does not occur if ¢ > 24°
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Excavation shape and boundary stresses

Elliptic opening -Boundary stresses around a mine opening can be established
from the elastic solution for particular problem geometry even in presence of

discontinuities. I T
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Where - o boundary stresses k W |
- p radius of curvature I [

-q=W/H

- Larger curvature makes higher stress concentration.

Ovaloidal opening —Applying the boundary stress of an ellipse inscribed in the
ovaloid. The width/height ratio for the openings is three, and the radius of
curvature for the sidewall is H/2. For a ratio of 0.5 of the horizontal and vertical
field principle stresses. | l
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Squre opening with rounded corners —Applying the boundary stress of an ellipse
whose curvature is the same as those of the rounded corners. The inscribed
ovaloid has a width of 2B[2!2 — 0.4(21? — 1)], from the simple geometry. The
boundary stress at the rounded corner is estimated as -

cr..\zpll—1+[ﬁBfl'-‘3~0.4(2'»’Lm}":} L = | ’ |

0.2B

=3.53p

The corresponding boundary element -
solution is 3.14p. i T I f

Effect of changing the relative dimensions

(a)

— Sidewall stress 2.5p — 1.7p

- The maximum boundary

stress can be reduced if the i
opening dimension is | crushea —gam 0. 0.3
increased in the direction of —

‘_.

the major principle stress. f—-

I WIH = 4/4.5 T I WIH = 4/6.5
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Effect of local geometry of an opening

L

— Width/height = 2/3

- A, B, C are highly stressed due to
their high level of curvature.

—— A——
- D is at low state of stress.
. . 0.5p
- Rock mas is compression may
behave as a stable continuum —— -~

while in a de-stressed state, small
loads can cause large
displacement of rock units.

Delineation of zones of rock failure

- Estimation of the extent of fracture zones provides a basis for prediction of
rock mass performance, modification of excavation design, or assessing
support and reinforcement requirement.

- The solution procedure suggested here examines only the initial, linear
component of the problem. For mining engineering purposes, the suggested
procedure is usually adequate.

* Extent of boundary failure
- Applicable compressive strength at boundary is o;.

- Tensile strength of rock mass is taken to be zero.
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Case of a circular excavation having o of 16 MPa:
ogo=pl1 + K+ 2(1 — K)cos 20]

For a rock mass with a crack initiation stress, 6, of 16

MPa (perhaps corresponding to a uniaxial strength of the

rock material of about 50 MPa), the data of Figure

indicate that compressive failure or spalling of the
boundary rock occurs over intervals defined by

7.5[1.3 + 1.4 cos 28] > 16 1i.e. for O given by
26° <0 <26 0r 1549 <6 <206°

tensile failure

compressive failure

s

compressive
failure

Similarly, boundary tensile failure occurs over intervals '/
satisfying the condition

7.5[1.3+ 1.4 cos 20]<0
790 <9< 1010 or 2499 <@ <2810 I I

[ tensile failure

Change in shape, installation of support/reinforcement, or increase the height of the opening can
be used.

Extent of failure zones in rock mass

3 e e S
: : |65 MPa— " . -\\ |
Close to the boundary (within a }""—— _ g e L/
. . R v AN/
radius): the constant deviator stress 2f o .5 ; >\
. . . 9 s Ve
. P i g)-03~
criterion 1is useful. N DT
. . . 1 I
Example of an circular opening in Lac v

du Bonnet granite: the maximum | .
deviator stress contour of 75 MPa |
predicted well the failure domain.

Microseismic

event \_’. -
9 L
A K AT
Y - e
- -
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General cases including interior zones of rock mass: Hoek-Brown criterion with ¢,

1) Principal stress contour method

a. Calculate various values of (o3, of;) i

b. Contour plots of s, and s, are superimposed. a e os

L
All_l

c. Find the intersections of s, and s; isobars
satisfying the failure criterion.

2) Direct comparison with the failure criterion T

a. Calculate the state of stress (principal stress)

b. Compare with the failure criterion.

c. Display failure locations throughout the rock mass.

Support and reinforcement of massive rock

(@

Explanation of the effect of support Lo

(1) Elastic rock medium

L
tat

- Stress before support: ' ' Wit = 4
GA =172.0 MPa, GB =—-8.0 MPa :: ! 20 MPa ! - ! 1 MPa l
- Stress after support - A - _
OAl = Oa2 + Op3 - W P
¢ &
=|+10(|-ﬁ+3) ' 1 n * "
= 161.0 MPa o ! 19 MPa !

= —7.0MPa

Support pressure does not significantly modify the elastic distribution around an
underground opening

oB| = op2 + oB3
& I‘)( 8 r 2x8 . 1) — © Shire
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(2) Elastic rock mass with a failed rock annulus

Rock mass strength is assumed to follow Coulomb's criterion:
(1 +sind) + 2ccos &b
03(1 —sind) | —sind
The strength of fractured rock is taken to be purely frictional, with the limiting state of
stress within the fractured rock mass defined by
(1 +sind")
o ————
(1 — sindf)

g =

or o= !?0'3 + CU

o = or a =dO’3

(a) interface between (b)
.7 . . . clastic and .
Equilibrium equations in fractured rock: p | faciured 201
1 lomains

Since the problem is axisymmetric,
there is only one differential equation

of equilibrium- i Tz
P
doy, _ %6 —Orr _ (d — l)ﬁ — "l—d
= racture
dr r r rock

Integrating the former expression, and introducing the boundary condition, 6,, = p; when
r = a, yields the stress distribution relations
r\d-1 ryd—1
Orr = Pi (E) and T66 =dpi((_l)

At the outer limit of the fractured annulus, fractured rock is in equilibrium with intact,
elastic rock. If p, is the equilibrium radial stress at the annulus outer boundary, r.,

rL‘ lf—l l)[ ]ﬂtl’—])
P1 = Di (—) or Fe=d | —
a Pi

Stress in elastic zone: Simple superposition indicates that the stress distribution in the
elastic zone is defined by

2 2 ) 2
rs o 72 A
Uﬁﬁ=P(1+r—‘3)—P1r—2 and Urr=P(l—r—2)+P|r—2
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At the inner boundary of the elastic zone: when r = r, the state of stress is defined by

Goo =2P—P1 and Orr = Pi

Applying to Coulomb s criterion: This state of stress must represent the limiting state of

intact rock (i.e. o, = bp; + Cy), substituting for og4(0;) and o,,(o5)-

2p—-C
2p—p1=bp+Cy o Pl=%

Substituting the with annulus outer boundary equation, we get

[2[) _ Co]lﬂ_d—l}
re=a| ——
(1+b)p,

At the inner boundary of the elastic zone: when r = r, the state of stress is defined by

and

The equations below, together with support pressure, field stresses and rock properties,
completely define the stress distribution and fracture domain in the periphery of the
opening.

r

d—1 i . d—1 1/(d-1)
I\ ¢ f@ /)
Orr = Pi (5) oye = dp; (;) Pr = pi (—) Te =4 (ﬂ)

a Pi
o) 1/(d-1)
2p —Cy
re=a|—
|:(] +[))Pji|

A numerical example provides some insight into the operational function installed

support. Choosing particular values of ¢ and ¢f of 359, p,= 0.05p and C, = 0.5p, leads to
ro = 1.99a.
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