"It's a Fact"

Sequence comparisons, which are based on evolutionary theory, are the foundation of bioinformatics

Alignments tell us about...

$>$ Function or activity of a new gene/protein
$>$ Structure or shape of a new protein
$>$ Location or preferred location of a protein
$>$ Stability of a gene or protein
$>$ Origin of a gene, protein, organelle, organism...

Similarity versus Homology

- Similarity refers to the likeness or \% similarity between 2 sequences
- Similarity of sequences usually means sharing a statistically measured number of bases or amino acids
- Similarity does not necessarily imply homology
- Homology refers to shared ancestry
- Two sequences are homologous if they are derived from a common ancestral sequence
- Homology often implies similarity
(note that structural, but not sequence, similarity may occur)

Similarity versus Homology

- Similarity can be quantified

$>$ It is correct to say that two sequences are X\% identical
$>$ It is correct to say that two sequences have a similarity score of Z
$>$ It is correct to say that two sequences are X\% similar, as long as the criteria for similarity is clear.

Similarity by chance - the impact of sequence complexity

MCDEFGHIKLAN.... High Complexity
ACTGTCACTGAT.... Mid Complexity
NNNNTTTTTNNN.... Low Complexity

Low complexity sequences are more likely

to appear similar by chance
Can you think of examples of low complexity sequences that in Nature? Perhaps encoding certain structural features?

Similarity versus Homology

$>$ Homology cannot be quantified
"Its homologous or it isnt"
$>$ If two sequences have a high \% identity it is OK to say they are homologous
>It is incorrect to say two sequences have a homology score of Z
> It is incorrect to say two sequences are $\mathrm{X} \%$ homologous or have a homology of $X \%$

Example of homology but little sequence similarity: The N -terminal domain of OprF and OmpA share only 15% identity but are homologous

OprF 1 -QGQNSVEIEAFGKRYFTDSVRNMKN-------ADLYGGSIGYFLTDDVELALSYGEYH OmpA 1 APKDNTWYTGAKLGWSQYHDTGLINNNGPTHENKLGAGAFGGYQVNPYVGFEMGYDWLG

OprF 52 DVRGTYETGNKKVHGNLTSLDAIYHFGTPGVGLRPYVSAGLA-HQNITNINSDSQGRQQ
OmpA 60 RMPYKGSVENGAYKAQGVQLTAKLGYPIT-DDLDIYTRLGGMVWRADTYSNVYGKNHDT

OprF 110 MTMANIGAGLKYYFTENFFAKASLDGQYGLEKRDNGHQG--EWMAGLGVGFNFG OmpA 118 GVSPVFAGGVEYAITPEIATRLEYQWTNNIGDAHTIGTRPDNGMLSLGVSYRFG

Some Simple (but not Hardfast) Guiding Rules

After low complexity sequences are considered...
$>$ If two sequence are >200 residues and $>25 \%$ identical, they are likely related
$>$ If two sequences are 15-25\% identical they may be related, but more tests are needed
> If two sequences are < 15\% identical they are most likely not related (but not always!)
$>$ If you need more than 1 gap for every 20 residues the alignment is suspicious

Sequence Alignment - Methods

Dot Plots

Dynamic Programming
Heuristic (Approx. but Fast) Local Alignment FASTA and BLAST

Multiple Sequence Alignment

Assessing Sequence Similarity

Rbn PNACYKTHQANKHIVIGEGNPYVPHFDASV
is this alignment significant?

Dot Plots

> "Invented" in 1970 by Gibbs \& McIntyre
$>$ Good for quick graphical overview - any size of sequence
$>$ Simplest method for sequence comparison
> Inter-sequence comparison
$>$ Intra-sequence comparison
\checkmark Identifies internal repeats
\checkmark Identifies domains or "modules"

Dot Plot Algorithm

$>$ Take two sequences (A \& B), write sequence A out as a row (length=m) and sequence B as a column (length =n)
$>$ Create a table or "matrix" of " m " columns and " n " rows
$>$ Compare each letter of sequence A with every letter in sequence B. If there's a match mark it with a dot, if not, leave blank

Dot Plot Algorithm

Direct repeats

Dot Plots \& Internal Repeats

A dot plot of human pleckstrin sequence against itself produced with Erik Sonnhammer's 'dotter' program. The sequence is plotted from N - to C - terminus along horizontal and vertical axes between residues 1 and approximately 350 .
-®

EMBOSS Needle

Results for job emboss_needie-120180503-182307-0198-58108949-p2m
Normin sumssion Detasis
Vear Apomeatio

Geevid alrilpiw

seq1 EARDF-NQYYSSIKRSGSIQ
seq2 LPKLFIDQYYSSIKRTMG- \dot{H}
global sequence alignment

```
seq1 NQYYSSIKRS
.:::::::.
seq2 DQYYSSIKRT
```

local sequence alignment

Identity

Identity defines the percentage of amino acids (or nucleotides) with a direct match in the alignment.

Similarity

When one amino acid is mutated to a similar residue such that the physiochemical properties are preserved, a conservative substitution is said to have occurred.

- For example, a change from arginine to lysine maintains the +1 positive charge

Dot Matrix Method

- A dot is placed at each position where two residues match.
- It's a visual aid. The human eye can rapidly identify similar regions in sequences.
- It's a good way to explore sequence organization: e.g. sequence repeats.
- It does not provide an alignment.

	T	H	E	F	A	T	C	A	T
T									
H									
E									
F									
A									
S									
T									
C									
A									
T									

This method produces dot-plots with too much noise
to be useful
\Rightarrow The noise can be reduced by calculating a score
using a window of residues.
\Rightarrow The score is compared to a threshold or stringency.

Dot Matrix Representation

- Produces a graphical representation of similarity regions
- The horizontal and vertical dimensions correspond to the compared sequences
- A region of similarity stands out as a diagonal

Dot Matrix or Dot-plot

- Each window of the first sequence is aligned (without gaps) to each window of the 2nd sequence
- A colour is set into a rectangular array according to the score of the aligned windows

Dot Matrix Display

- Diagonal rows $(\searrow$) of dots reveal sequence similarity or repeats.
- Anti-diagonal rows (/) of dots represent inverted repeats.
- Isolated dots represent random similarity.

Dynamic Programming Method

Table 2-3. $\mathbf{3}$ UB lette cols of amino oxids.
(1) assuming the standard genetic code.

1-letter	3-letter	Meaning	Codon(1)
A	Ala	Alanine	GCT,GCC,GCA,GCG
в		Asp or Asn	gat,gac,att,aAC
c	Cys	Cysteine	TGT,TGC
D	Asp	Aspartic	gat,gac
E	Glu	Glutamic	gat,gag
F	Phe	Phenylalanine	тtt, TTC
G	Gly	Glycine	GGT,GGC,GGA,GGG
H	His	Histidine	cat,cac
1	He	Isoleucine	att,atc,ata
к	Lys	Lysine	AAA,AAG
L	Leu	Leucine	tTG,tTA,CTT,CTC,CTA,CTG
м	Met	Methionine	atg
${ }^{\mathrm{N}}$	${ }_{\text {An }}$	Asparagine	${ }^{\text {a AT, AaC }}$
${ }^{\text {P }}$	Pro	Proline	CCT,CCC, OCA, CCG
Q	Gln	Glutamine	CAA,CAG
R	Arg	Arginine	CGT,CGC,CGA,CGG,AGA,AGG
S	Ser	Serine	TCT,TCC,TCA,TCG,AGT,AGC
T	Thr	Threonine	ACT,ACC, ACA,ACG
v	Val	Valine	GTT,GTC,GTA,GTG
w	Trp	Tryptophan	TGG
x	Xxx	Unknown	
Y	Tyr	Tyrosine	tat,tac
z		Glu or Gim	gat,gag, Caa, cag
*	End	Terminator	taatag,tga

The Principle of Parsimony in Phylogeny

Infer relationships between species. It states that the tree with the fewest common ancestors is the most likely.

Example

- Four species
- All of which have wings
- But only three of which can hover while flying. The most parsimonious possible model
- All four species have one ancestor
- The second trait,
- Three species that hover have a common ancestor
- Two different evolutionary paths.

Substitution matrices

- Substitution matrix contains values proportional to the probability that amino acid A mutates into amino acid B for all pairs of amino acids through a period of evolution

[^0]
Construction of Substitution matrices

-BLOSUM
-BLOCKS SUBSTITUTION MATRIX

- PAM
- POINT ACCEPTED MUTATIONS

How to construct substitution matrices ?

- Tabulate substitutions
- A to A: 9867 times
- A to R: 2 times
-A to N: 9 times
- etc....

How to construct substitution matrices ?

mutation rates

	A	R	N	D	C	Q	E	G	H
A	9867	2	9	10	3	8	17	21	2
R	1	9913	1	0	1	10	0	0	10
N	4	1	9822	36	0	4	6	6	21
D	6	0	42	9859	0	6	53	6	4
C	1	1	0	0	9973	0	0	0	1
Q	3	9	4	5	0	9876	27	1	23
E	10	0	7	56	0	35	9865	4	2
G	21	1	12	11	1	3	7	9935	1
H	1	8	18	3	1	20	1	0	9912
1	2	2	3	1	2	1	2	0	0
...

How to construct substitution matrices ?

Substitution matrix score $=$

Log Observed mutation rate in alignment
Expected random mutation rate

The random mutation rate

Example:

Expected random mutation rate is 1 in 10000 and observed mutation rate of W to R is 1 in 10

$$
\text { Score }=\log (0.1 / 0.0001)=\log (1000)=+3
$$

Bioinformatics
GBIO0002-1

BLOSUM-x matrices

- Constructed from aligned sequences with specific x\% similarity
- matrix built using sequences with no more then 50\% similarity is called BLOSUM-50
- For highly mutating / dissimilar sequences use - BLOSUM-45 and lower
- For highly conserved / similar sequences use - BLOSUM -62 and higher

- What diagonal represents ?perfect match between a.a.
- What is the score for substitution $E \rightarrow$ (acida.a.)? score = 2
- More drastic substitution $K \rightarrow$ (basic to non-polar)? Score = -3 kirill Bessonov slide 53

C	9																			
S	-1	4																		
T	-1	1	5																	
P	-3	-1	-1	7																
A	0	1	0	-1	4															
G	-3	0	-2	-2	0	6														
N	-3	1	0	-2	-2	0	6													
D	-3	0	-1	-1	-2	-1	1	6												
E	4	0	-1	-1	-1	-2	0	2	5											
Q	-3	0	-1	-1	-1	-2	0	0	2	5										
H	-3	-1	-2	-2	-2	-2	1	-1	0	0	8									
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5								
K	-3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5							
M	-1	-1	-1	-2	-1	- 3	-2	-3	-2	0	-2	-1	-1	5						
1	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4					
L	-1	-2	-1	-3	-1	-4	-3	4	-3	-2	-3	-2	-2	2	2	4				
v	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4			
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	-	0	0	-1			
Y	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7	
w	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11
	C	S	T	P	A	G	N	D	E	Q	H	R	K	M	1	L	v	F	Y	w

Simple Scoring Rule
Score each position independently:

- Match:
+1
- Mismatch:
-1
- Indel:
-2

Score of an alignment is sum of position scores

Example

Score: $(+1 \times 13)+(-1 \times 2)+(-2 \times 4)=3$ -----GCGCATGGATTGAGCGAs

Score: $(+1 \times 5)+(-1 \times 6)+(-2 \times 11)=-23$

More General Scores

- The choice of $+1,-1$, and -2 scores is quite arbitrary
- Depending on the context, some changes are more plausible than others
\diamond Exchange of an amino-acid by one with similar properties (size, charge, etc.) vs.
\diamond Exchange of an amino-acid by one with opposite properties
- Probabilistic interpretation: How likely is one alignment versus another ?

Local alignment illustration (2 of 2)

Bioinformatics
GBIO0002-1
Biological Sequences
Local alignment illustration (3 of 3)

| | | G | G | C | T | C | A | A | T | C | A |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \mathbf{A} | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 |
| \mathbf{C} | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 1 | 1 | 2 | 0 |
| C | 0 | 0 | 0 | 2 | 1 | 2 | 1 | 0 | 0 | 3 | 1 |
| T | 0 | 0 | 0 | 0 | 4 | 2 | 1 | 0 | 2 | 1 | 1 |
| \mathbf{A} | 0 | 0 | 0 | 0 | 2 | 3 | 4 | 3 | 1 | 1 | 3 |
| \mathbf{A} | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 6 | 4 | 2 | 3 |
| \mathbf{G} | 0 | 2 | 2 | 0 | 0 | 0 | 3 | 4 | 5 | 3 | 1 |
| \mathbf{G} | 0 | 2 | 4 | 2 | 0 | 0 | 1 | 2 | 3 | 4 | 2 |

Best score: $6 \underbrace{\substack{\text { CTCAA } \\ \text { CT-AA }}}_{\text {locally }} \underbrace{\text { GCCTCAATCA }}_{\text {in the whole seq. context (globally) }}$

Kirill Bessonov

An example: scoring a sequence alignment with a gap penalty

Sequence 1 VDS - CY
Sequence 2 VESLCY
Score 424 -1197

Score = sum of amino acid pair scores (26)
minus single gap penalty (11) $=15$
Note: 1 . it is likely to hav e non-identical amino acids placed in the corresponding positions
2. Scores gained by each match are not always the same, for instance two rare amino acids will score more than two common.
3. The alignment gap(s) may be introduced for optimising the score. Introduction of gaps causes penalties.

An example of aligning text strings

Raw Data ???
TCATG
C ATTG

2 matches, 0 gaps

T C AT G
CATT ${ }^{\text {I }}$ G

3 matches (2 end gaps)
TCATG.

> 4 matches, 1 insertion
> TCA-T G
> C ATT G

4 matches, 1 insertion
TCAT-G
$\begin{array}{lllll}\mid & \mid & \mid \\ C & \text { A } & \text { T } & \text { T }\end{array}$
$1|\mid$
C ATTG

Are these proteins homologs?

SEQ 1: RVVNLVPS--FWVLDATYKNYA INYNCDVTYKLY

| L P \quad W L | Y N | Y C | L |
| :--- | :--- | :---: | :---: | :---: |
| PLMP PA | | | |

SEQ 2: QFFPLMPPAPYWILATDYENLPLVYSCTTFFWLF
SEQ 1: RVVNLVPS--FWVLDATYKNYA INYNCDVTYKLY
L P W LDATYKNYA Y C L MAYBE (score = 15)
SEQ 2: QFFPLMPPAPYWILDATYKNYALVYSCTTFFWLF

SEQ 1: RVVNLVPS--FWVLDATYKNYA INYNCDVTYKLY
RVV L PS W LDATYKNYA Y CDVTYKL
YES (score $=24$)
SEQ 2: RVVPLMPSAPYWILDATYKNYALVYSCDVTYKLF

[^0]: - Substitution matrices are constructed from a large and diverse sample of sequence alignments

