

Dept. of Computer Science and Engineering University of Rajshahi www.ru.ac.bd

Dr. Shamim Ahmad

Gene Expression

- Genes are DNA sequences that encode proteins (the gene product)
- Gene expression refers to the process whereby the information contained in genes begins to have effects in the cell.
- DNA encodes and transmits the genetic information passed down from parents to offspring.

Genetic code

- The alphabet of the genetic code contains only four letters (A,T,G,C).
- A number of experiments confirmed that the genetic code is written in 3-letter words, each of which codes for particular amino acid.
- A nucleic acid word (3 nucleotide letters) is referred to as a *Codon*.

Nucleic acids

- Principle information molecule in the cell.
- All the genetic codes are carried out on the nucleic acids.
- Nucleic acid is a linear polymer of nucleotides

Nucleotides

- Nucleotides are the unit structure of nucleic acids.
- Nucleotides composed of 3 components:
 - Nitrogenous base (A, C, G, T or U)
 - Pentose sugar
 - Phosphate

Nitrogenous bases

- There are 2 types:
 - Purines(pyoor-een):
 - Two ring structure
 - Adenine (A) and Guanine (G)
 - Pyrimidines(pahy-rim-i-deen,):
 - Single ring structure
 - Cytosine (C) and Thymine (T) or Uracil (U).

Role of Nucleotides

 They carry packets of chemical energy—in the form of the <u>nucleoside triphosphates</u>
 <u>ATP(Adenosine triphosphate)</u>
 <u>GTP(Guanosine triphosphate</u>
 <u>CTP(Cytidine triphosphate)</u>

Role of Nucleotides

 They carry packets of chemical energy—in the form of the <u>nucleoside triphosphates</u>
 <u>ATP(Adenosine triphosphate)</u>
 <u>GTP(</u>Guanosine triphosphate)
 <u>CTP(</u>Cytidine triphosphate)

Role of Nucleotides

- throughout the cell to the many cellular functions that demand energy
 synthesizing <u>amino acids</u>
 - synthesizing proteins
 - cell membranes and parts
- Moving the cell and moving cell parts
 - internally and intercellularly
- Dividing the cell
- Participate in <u>cell signaling</u>
 - (<u>cGMP</u> and <u>cAMP</u>

Types of Nucleic acids

There are 2 types of nucleic acids:

- 1. <u>Deoxy-ribonucleic_acid</u> (DNA)
 - Pentose Sugar is deoxyribose (no OH at 2' position)
 - Bases are Purines (A, G) and Pyrimidine (C, T).

Polymerization of Nucleotides

The formed polynucleotide chain is formed of:

- Negative (-ve) charged
 Sugar-Phosphate backbone.
 Free 5' phosphate on one end (5' end)
- Free 3' hydroxyl on other end (3' end)
- Nitrogenous bases are not in the backbone
- Attached to the base Free to pair with nitrogenous bas of othe

Polymerization of Nucleotides

- Nucleic acids are polymers of nucleotides.
- The nucleotides formed of purine or pyrimedine bases linked to phosphorylated sugars (nucleotide back bone).
- The bases are linked to the pentose sugar to form <u>Nucleoside</u>.
- The nucleotides contain one phosphate group linked to the 5' carbon of the nucleoside.

Nucleotide = Nucleoside + Phosphate group

Example of DNA Primary Structure

In DNA, A, C, G, and T are linked by 3'-5' ester bonds between deoxyribose and phosphate

N.B.

- The polymerization of nucleotides to form nucleic acids occur by condensation reaction by making phospho-diester bond between 5' phosphate group of one nucleotide and 3' hydroxyl group of another nucleotide.
- Polynucleotide chains are always synthesized in the 5' to 3' direction, with a free nucleotide being added to the 3' OH group of a growing chain.

Example of DNA Primary Structure In DNA, A, C, G, and T are linked by 3'-5' ester bonds

Complementary base pairing

- It is the most important structural feature of nucleic acids
- It connects bases of one polynucleotide chain (nucleotide polymer) with complementary bases of other chain
- Complementary bases are bonded together via:
 - Double hydrogen bond between A and T (DNA), A and U (RNA) (A=T or A=U)
 - Triple H-bond between G and C in both DNA or RNA (GEC)

Base pairing in DNA:

Ś **Pairing DNA Nucleotides** Solution What would be the complementary E nucleotide pairing? N-Ł Ê (P Nucleotide G С С G 4 Rule A to T A T G

How Do Nitrogen Bases Pair Up?

Adenine(A) pairs up w/ Thymine(T)
Guanine(G) pairs up w/ Cytosine(

Significance of complementary base pairing

- The importance of such complementary base pairing is that each strand of DNA can act as template to direct the synthesis of other strand similar to its complementary one.
- Thus <u>nucleic acids are uniquely capable of</u> <u>directing their own self replication</u>.
- The information carried by DNA and RNA direct the synthesis of specific proteins which control most cellular activities.

Artificial Nucleotides

1989

- Steven Benner
- Swiss Federal Institute of Technology
- Modified forms
 - Cytosine
 - Guanine
- DNA molecules in vitro

Artificial Nucleotides

2002

Ichiro Hirao's group, Japan Unnatural base pair between 2-amino-8 **2006** 7-(2-thienyl)imidazo **2013** Applied the Ds-Px pair to DNA in vitro

2012

American scientists led by Floyd R

- The two new artificial nucleotides or Unnatural Base Pair (UBP)
- d5SICS and dNaM
- Bearing hydrophobic nucleobases
- team designed a variety of in vitro

Artificial Nucleotides

2014

 A team synthesized a stretch of circular DNA known as a <u>plasmid</u> containing natural T-A and C-G base pairs along with the best-performing UBP (Unnatural Base Pair).

Artificial Nucleotides

2014

- inserted it into *E. coli* (intestines)
- that successfully replicated the unnatural base pairs through multiple generations.
- This is the first known example of a living organism passing along an expanded genetic code
- 300 variants to refine the design of nucleotides
 - •

DNA structure

- DNA is a double stranded molecule consists of 2 polynucleotide chains running in opposite directions.
- Both strands are complementary to each other.
- The bases are on the inside of the molecules and the 2 chains are joined together by double **H-bond** between A and T and triple H-bond between C and G..

DNA structure

- The base pairing is very specific which make the 2 strands complementary to each other.
- So each strand contain all the required information for synthesis (replication) of a new copy to its complementary.

Forms of DNA

Minor groove

The minor groove is generated by the smaller angular distance between sugars.

Major groove

major groove: The larger of the two grooves that spiral around the surface of the B-form of DNA.

Forms of DNA

1- B-form helix:

- It is the most common form of DNA in cells.
 Right-handed helix
 - Turn every 3.4 nm.
 - Each turn contain **10 base pairs** (the distance between each 2 successive bases is 0.34 nm)
 - Contain 2 grooves;
 - Major groove (wide): provide easy access to bases
 - Minor groove (narrow): provide poor access.

2- A-form DNA:

- Less common form of DNA, more common in RNA
 - Right handed helix
 - Each turn contain 11 b.p/turn
 - Contain 2 different grooves:
 - Major groov e: v ery deep and narrow
 Minor groov e: v ery shallow and wide (binding site for RNA)

3- Z-form DNA:

- Radical change of B-form
 - Left handed helix, very extended
 - It is GC rich DNA regions.
 - The sugar base backbone form Zig-Zag shape
 - The B to Z transition of DNA molecule may play a role in gene regulation.

Denaturing and Annealing of DNA

- The DNA double strands can denatured if heated (95°C) or treated with chemicals.
 AT regions denature first (2 H bonds)
 GC regions denature last (3 H bonds)
- DNA denaturation is a reversible process, as denatured strands can re-annealed again if cooled.
- This process can be monitored using the hyperchromicity (melting profile).

Hyperchromicity (melting profile)

- It is used to monitor the DNA denaturation and annealing.
- It is based on the fact that single stranded (SS) DNA gives higher absorbtion reading than double stranded (DS) at wavelength 260°.
- Using melting profile we can differentiate betwe**en** single stranded and double stranded DNA.

Properties of a DNA double-helix-----

The strands of DNA are antiparallel

The strands are complimentary

There are Hydrogen bond forces

Schematic representation of the strand separation in duplex-DNA resulting from its heat denaturation.

8.3 DNA Replication

- DNA polymerase enzymes bond the nucleotides together to form the double helix.
- Polymerase enzymes form covalent bonds between nucleotides in the new strand.

8.3 DNA Replication

- Two new molecules of DNA are formed, each with an original strand and a newly formed strand.
- DNA replication is therefore, semiconservative.

DNA Replication

- Replication of the DNA molecule is semi-conservative, which means that each parent strand serves as a template for a new strand and that the two (2) new DNA molecules each have one old and one new strand.
- DNA replication requires:
 - A strand of DNA to serve as a template
 - Substrates deoxyribonucleoside triphosphates (dATP, dGTP, dCTP, dTTP).
 - DNA polymerase an enzyme that brings the substrates to the DNA strand template
 - A source of *chemical energy* to drive this synthesis reaction.

DNA Replication

- Nucleotides are always added to the growing strand at the 3' end (end with free -OH group).
- The hydroxyl group reacts with the phosphate group on the 5' C of the deoxyribose so the chain grows
- Energy is released when the bound linking 2 of the 3 phosphate groups to the deoxyribonucleoside triphosphate breaks
- Remaining phosphate group becomes part of the sugarphosphate backbone

Replication of DNA

•During cell division a *copy* of DNA must be made

•When new cells are formed each new cell gets an *exact copy* of the genetic information.

•This *copy* of DNA is made through a process known as <u>*Replication.*</u>

Steps of Replication

•During replication, each strand serves as a pattern to make new DNA molecule.

- 1. The 2 nucleotide strands separate at base pairs.
 - They unzip like a zipper using DNA Helicase (enzyme)
- Each strand then builds its opposite strand by base pairing with nucleotides that float freely in the nucleus.
- Each new DNA molecule has 1 nucleotide strand from the origina/DNA molecule and 1 nucleotide strand made from free nucleotides in the nucleus.

8.5 Translation

The genetic code matches each codon to its amino acid or function.
 The genetic code matches each RNA codon with its amiro acid or function.
 The stop
 Second base

codons											
			Ŭ		c		2		Ğ		
 one start codon, codes for 	Ŭ	UUU UUC UUA UUG	phenylalanine (Phe) leucine (Leu)	UCU UCC UCA UCG	serine (Ser)	UAU UAC UAA UAG	tyrosine (Tyr) STOP STOP	UGU UGC UGA UGG	cysteine (Cys) STOP tryptophan (Trp)	U C A G	
methionine Find the first base, C,	ase C	CUU CUC CUA	leucine (Leu)	CCU CCC CCA	proline (Pro)	CAU CAC CAA	histidine (His) glutamine (Gh)	CGU CGC CGA	arginine (Arg)	U C A	C Thir
Find the second base, A, in the top row. Find the box where these two intersect.	First b	AUU AUC AUA AUG	isoleucine (le) methionine (Met)	ACU ACC ACA ACG	threonine (Thr)	AAU AAC AAA AAG	asparagine (Asn) lysine (Lys)	AGU AGC AGA AGG	serine (Ser) arginine (Arg)	U C A G	d base
Find the third base, U, in the right col- umn. CAU codes for histidine, abbre- viated as His.	<u>[0]</u>	GUU GUC GUA GUG	valine (Val)	GCU GCC GCA GCG	alanine (Ala)	GAU GAC GAA GAG	aspartic acid (Asp) glutamic acid (Glu)	GGU GGC GGA GGG	glycine (Gly)	U C A G	

<u>Codon</u> = 3 letter section of mRNA that codes for one amino acid

		Second base					
	_	U	С	Α	G		
	U	UUU UUC UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G	
· (5' end)	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG GIn	CGU CGC CGA CGG	U C A G	
First base	A	AUU AUC AUA AUA AUG Met or	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	U C A L G	
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG	GGU GGC GGA GGG	U C A G	

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

	Amino Acid	SLC	DNA codons
Iso	leucine	1	ATT, ATC, ATA
Lei	ucine	L	CTT, CTC, CTA, CTG, TTA, TTG
Val	ine	V	GTT, GTC, GTA, GTG
Ph	enylalanine	F	тт, тс
Met	thionine	М	ATG
Cy	steine	С	TGT, TGC
Ala	nine	Α	GCT, GCC, GCA, GCG
Gly	cine	G	GGT, GGC, GGA, GGG
Pro	oline	Ρ	CCT, CCC, CCA, CCG
Thr	eonine	т	ACT, ACC, ACA, ACG
Ser	ine	s	TCT, TCC, TCA, TCG, AGT, AGC
Tyr	osine	Y	TAT, TAC
Try	ptophan	W	TGG
Glu	Itamine	Q	CAA, CAG
Asp	oaragine	N	AAT, AAC
His	tidine	н	CAT, CAC
Gli	itamic acid	E	GAA, GAG
Asp	partic acid	D	GAT, GAC
Lys	sine	ĸ	AAA, AAG
Arg	inine	R	CGT, CGC, CGA, CGG, AGA, AGG
Sto	p codons	Stop	TAA, TAG, TGA