Causes for sequence (dis)similarity

mutation: | a nucleotide at a certain location is replaced by |
| :--- |
| another nucleotide (e.g.: ATA \rightarrow AGA) |

insertion: | at a certain location one new nucleotide is |
| :--- |
| inserted inbetween two existing nucleotides |
| (e.g.: AA \rightarrow AGA) |

deletion: | at a certain location one existing nucleotide |
| :--- |
| is deleted (e.g.: ACTG \rightarrow AC-G) |

indel: \quad an insertion or a deletion

3.4 Sequence alignment: global and local

Find the similarity between two (or more)
DNA-sequences by finding a good alignment between them.

The biological problem of sequence alignment

Sequence alignment - definition

Sequence alignment is an arrangement of two or more sequences, highlighting their similarity.

The sequences are padded with gaps (dashes) so that wherev er possible, columns contain identical characters from the sequences involved

> tcctctgcetctgccatcat--- caaccccaaagt
> |||| ||| ||||| ||||| |||||||||||
> tcctgtgcatctgcaatcatgggcaaccccaaagt

Pairwise alignment

Pairwise sequence alignment methods are concerned with finding the bestmatching piecewise local or global alignments of protein (amino acid) or DNA (nucleic acid) sequences.

Ty pically, the purpose of this is to find homologues (relatives) of a gene or geneproduct in a database of known examples.

This inf ormation is usef ul for answering a variety of biological questions:

1. The identification of sequences of unknown structure or function.
2. The study of molecular evolution.

Algorithms

Needleman-Wunsch

Pairwise global alignmentonly.
Smith-Waterman
Pairwise, local (or global) alignment.

BLAST

Pairwise heuristic local alignment

Global alignment

A global alignment between two sequences is an alignment in which all the characters in both sequences participate in the alignment.

Global alignments are usef ul mostly for finding closely-related sequences.
As these sequences are also easily identif ied by local alignment methods global alignment is now somewhat deprecated as a technique.

Further, there are sev eral complications to molecular ev olution (such as domain shuffling) which prev ent these methods from being usef ul.

Global Alignment

Find the global best fit between two sequences
Example: the sequences $\mathbf{s}=$ VIVALASVEGAS and t = VIVAD AVIS align like:

The Needleman-Wunsch algorithm

Of course this works for both DNA-sequences as for protein-sequences.

The Needleman-Wunsch algorithm (1970, J Mol Biol. 48(3):443-53) performs a global alignment on two sequences (\mathbf{s} and \mathbf{t}) and is applied to align protein or nucleotide sequences.

The Needleman-Wunsch algorithm is an example of dynamic programming, and is guaranteed to find the alignment with the maximum score.

The Needleman-Wunsch algorithm

Alignment scoring function

The cost of aligning two symbols $\boldsymbol{x}_{\mathbf{i}}$ and $\boldsymbol{y}_{\mathrm{j}}$ is the scoring function $\sigma\left(x_{i}, y_{j}\right)$

		C	0	E	L	A	C	A	N	T	H
	0	$\stackrel{\leftarrow}{-1}$	$\leftarrow-2$	4	\leftarrow	$\stackrel{-5}{4}$	$\stackrel{\leftarrow}{6}$	\leftarrow	$\stackrel{\boxed{ }}{-8}$	\leftarrow	$\stackrel{4}{-10}$
P	4-1	${ }^{-1}$	${ }_{-2}$	${ }_{-3}$	${ }_{-4}$	${ }_{-5}$	${ }_{-6}$	${ }^{1} 7$	${ }_{-8}$	${ }_{-9}$	${ }_{-10}$
E	4-2	k_{-2}	k_{-2}	${ }_{-1}$	0	$\longleftarrow-3$	-4	$.5$	$\stackrel{-6}{ }$	$.7$	-8
L	4-3	${ }^{-3}$	${ }_{-3}$	$\leftarrow-2$	${ }_{-2}$	-1	$\longleftarrow-2$	4	4	$\stackrel{-}{-5}$	$\stackrel{4}{-6}$
1	4-4	${ }_{-4}$	¢-4	¢-3	4-1	${ }^{-1}$	${ }_{-2}$	${ }_{-1}$	${ }_{-4}$	${ }_{-5}$	${ }_{-6}$
c	4.5	-3	$\stackrel{\square}{-4}$	$\uparrow-4$	4-2	K_{-2}	${ }_{-0}$	\leftarrow	$\frac{-2}{-2}$	$\stackrel{-}{-3}$	-4
A	4-6	4-4	-4	${ }_{-5}$	4.3	-	4-1	${ }^{-1}$	$\stackrel{\leftarrow}{-0}$	$\stackrel{-1}{-1}$	-2
N	¢-7	4.5	k_{-5}	${ }_{-5}$	¢-4	--2	${ }_{-2}$	\leftarrow	K_{-2}	$\stackrel{-}{-1}$	4

Alignment cost

The cost of the entire alignment:

$$
M=\sum_{i=1}^{c} \sigma\left(x_{i}, y_{i}\right)
$$

The Needleman-Wunsch algorithm

1. Create a table of size $(m+1) \times(n+1)$ for sequences \mathbf{s} and \mathbf{t} of lengths m and n,
2. Fill table entries ($m 1$) and ($1: n$) with the values:

$$
M_{i, 1}=\sum_{k=1}^{i} \sigma\left(\mathbf{s}_{k},-\right), \quad M_{1, j}=\sum_{k=1}^{j} \sigma\left(-, \mathbf{t}_{k}\right)
$$

3. Starting from the top left, compute each entry using the recursive relation:

$$
M_{i, j}=\max \left\{\begin{array}{c}
M_{i-1, j-1}+\sigma\left(\mathbf{s}_{i}, \mathbf{t}_{j}\right) \\
M_{i-1, j}+\sigma\left(\mathbf{s}_{i},-\right) \\
M_{i, j-1}+\sigma\left(-, \mathbf{t}_{j}\right)
\end{array}\right\}
$$

4. Perf orm the trace-back procedure from he bottom-right corner

Optimal global alignment

The optimal global alignment A^{*} between two sequences \mathbf{s} and \mathbf{t} is the alignment $A(\mathbf{s}, \mathbf{t})$ that maximizes the total alignment score $M(A)$ over all possible alignments.

$$
A^{*}=\operatorname{argmax} M(A)
$$

Finding the optimal alignment A^{*} looks a combinatorial optimization problem:
i. generate all possible allignments
ii. compute the score M
iii. select the alignment A^{*} with the maximum score M^{*}

A simple scoring function

$$
\begin{aligned}
& \sigma(-, a)=\sigma(a,-)=-1 \\
& \sigma(a, b)=-1 \text { if } a \neq b \\
& \sigma(a, b)=1 \text { if } a=b
\end{aligned}
$$

The substitution matrix

A more realistic scoring function is given by the biologically inspired substitution matrix :

$$
\begin{array}{rrrrr}
- & \text { A } & \text { G } & \text { C } & \text { T } \\
\text { A } & 10 & -1 & -3 & -4 \\
\text { G } & -1 & 7 & -5 & -3 \\
\text { C } & -3 & -5 & 9 & 0 \\
\mathbf{T} & -4 & -3 & 0 & 8
\end{array}
$$

Examples:

* PAM (Point Accepted Mutation) (Margaret Dayhoff) * BLOSUM (BLOck SUbstitution Matrix) (Henikoff and Henikoff)

Similarity Matrix

> | | \mathbf{A} | \mathbf{G} | \mathbf{C} |
| :--- | ---: | ---: | ---: |
| \mathbf{T} | | | |
| \mathbf{A} | 1 | -1 | -1 |

> This substitution matrix can be described as: $s\left(a_{i}, b_{j}\right)= \begin{cases}+1, & a_{i}=b_{j} \\ -1, & a_{i} \neq b_{j}\end{cases}$

Scoring function

The cost for aligning the two sequences $\mathbf{s}=$ VIVALASVEGAS and $\mathbf{t}=$ VIVADAVIS :
$A(\mathbf{s}, \mathbf{t})=|||||| |$
VIVADA-V--IS
is:
$\begin{array}{rlrl}\boldsymbol{M}(\boldsymbol{A}) & =7 \text { matches }+2 \text { mismatches }+3 \text { gaps } \\ & =7 & -2 & -3\end{array}$

The Needleman-Wunsch algorithm

For example, if the substitution matrix was

-	A	G	C	T
A	10	-1	-3	-4
G	-1	7	-5	-3
C	-3	-5	9	0
T	-4	-3	0	8

then the alignment: AGACTAGTTAC
CGA---GACGT
with a gap penalty of -5 , would have the following score...
$S(A, C)+S(G, G)+S(A, A)+3 \times d+S(G, G)+S(T, A)+S(T, C)+S(A, G)+S(C, T)$
$=-3+7+10-3 \times 5+7+-4+0+-1+0=1$

The Needleman-Wunsch algorithm

1. Create a table of size $(m+1) \times(n+1)$ for sequences \mathbf{s} and \mathbf{t} of lengths m and n,
2. Fill table entries $(m 1)$ and $(1: n)$ with the v alues:

$$
M_{i, 1}=\sum_{k=1}^{i} \sigma\left(\mathbf{s}_{k},-\right), \quad M_{1, j}=\sum_{k=1}^{j} \sigma\left(-, \mathbf{t}_{k}\right)
$$

3. Starting from the top left, compute each entry using the recursive relation:

$$
M_{i, j}=\max \left\{\begin{array}{c}
M_{i-1, j-1}+\sigma\left(\mathbf{s}_{i}, \mathbf{t}_{j}\right) \\
M_{i-1, j}+\sigma\left(\mathbf{s}_{i},-\right) \\
M_{i, j-1}+\sigma\left(-, \mathbf{t}_{j}\right)
\end{array}\right\}
$$

4. Perf orm the trace-back procedure from he bottom-right corner
-The path from the top or left cell represents an indel pairing

- , so take the score of the left and the top cell
- and add the score for indel to each of them.
-The diagonal path represents a match/mismatch
-so take the score of the top-left diagonal cell
- and add the score for match if the corresponding bases in the row and column are matching or
-the score for mismatch if they do not.

		\mathbf{G}	\mathbf{C}	\mathbf{A}	\mathbf{T}	\mathbf{G}	\mathbf{C}	\mathbf{U}
	0	-1	-2	-3	-4	-5	-6	-7
\mathbf{G}	-1							
\mathbf{A}	-2							
T	-3							
T	-4							
A	-5							
C	-6							
A	$-\mathbf{- 7}$							

		\mathbf{G}	\mathbf{C}
	0	-1	-2
G	-1	1	\mathbf{X}
A	-2	\mathbf{Y}	

X:

- Top: $(-2)+(-1)=(-3)$
- Left: $(+1)+(-1)=(0)$
- Top-Left: $(-1)+(-1)=(-2)$
Y:
- Top: $(1)+(-1)=(0)$
- Left: $(-2)+(-1)=(-3)$
- Top-Left: $(-1)+(-1)=(-2)$
- Top-Left: $(-1)+(-1)=(-2)$

For both X and Y , the highest score is zero:

		\mathbf{G}	\mathbf{C}
	$\mathbf{0}$	-1	-2
\mathbf{G}	-1	1	$\mathbf{0}$
\mathbf{A}	-2	$\mathbf{0}$	

- A diagonal arrow represents a match or mismatch,
- so the letters of the column and the letter of the row of the origin cell will align.
- A horizontal or vertical arrow represents an indel.
- Horizontal arrows will align a gap ("-") to the letter of the column (the "top" sequence),
- Vertical arrows will align a gap to the letter of the row (the "side" sequence).
- If there are multiple arrows to choose from
- They represent a branching of the alignments.
- If two or more branches all belong to paths from the bottom right to the top left cell
- They are equally viable alignments
- In this case, note the paths as separate alignment candidates.

$\mathrm{U} \rightarrow \mathrm{CU} \rightarrow \mathrm{GCU} \rightarrow-\mathrm{GCU} \rightarrow \mathrm{T}-\mathrm{GCU} \rightarrow \mathrm{AT}-\mathrm{GCU} \rightarrow$ CAT-GCU \rightarrow GCATG-CU $\mathrm{A} \rightarrow \mathrm{CA} \rightarrow \mathrm{ACA} \rightarrow$ TACA \rightarrow TTACA \rightarrow ATTACA \rightarrow-ATTACA \rightarrow G-ATTACA

	C	0	E	L	A	C	A	N	T	H
0	$\stackrel{\leftarrow}{-1}$	$\stackrel{\leftarrow}{-2}$	$\stackrel{\leftarrow}{-3}$	$\stackrel{-}{4}$	$\stackrel{-}{-5}$	$\stackrel{\leftarrow}{-6}$	$\stackrel{-7}{ }$	$\stackrel{-}{-8}$	$\stackrel{\leftarrow}{-9}$	$\stackrel{\leftarrow}{-10}$
P										
$E-2$										
14										
1 ¢-4										
(4.5										
A \uparrow ¢-6										
N \uparrow-7										

		c	0	E	L	A	C	A	N	T	H
	0	$\stackrel{-}{-1}$	$\leftarrow-2$	-	$\stackrel{4}{4}$	$\stackrel{4}{-5}$	$\stackrel{-}{6}$	$\stackrel{4}{-7}$	$\stackrel{-}{4}$	$\stackrel{-}{-9}$	$\stackrel{-10}{ }$
P	4-1	${ }^{1}$	${ }_{-2}$	${ }^{\circ}$	-4	${ }_{-5}$	-6	-7	-8	-9	-
E	\uparrow -	${ }_{-2}$	${ }_{-2}$	${ }_{-1}$	$\stackrel{-}{0}$	$\stackrel{-}{4}$	$\stackrel{-}{4}$	$\stackrel{-}{4}$	4	$\stackrel{4}{-7}$	-8
1	¢-3	${ }_{-3}$	${ }_{-3}$	-2	${ }_{-2}$	-1	-2	- 3	-4	. 5	-6
	¢-4	${ }_{-4}$	4-4	4-3	4-1	${ }^{-1}$	${ }_{-2}$	${ }_{-1}$	${ }_{-4}$	${ }_{-5}$	
c	4.5	${ }_{-3}$	$\stackrel{4}{4}$	¢-4	4-2	${ }_{-2}$. 0	- 1	$\stackrel{-2}{4}$	-3	-4
A	¢-6	4-4	-	K_{5}	¢-3	${ }^{-1}$	4-1	${ }_{-1}$	$\stackrel{-}{*}$	\leftarrow	-2
N	¢-7	4-5	${ }_{-5}$	${ }_{-5}$	¢-4	¢-2	${ }_{-2}$	$\stackrel{-}{-}$	${ }_{-2}$	-1	- 0

Needleman Wunsch Sequence Alignment

The pseudo-code for the algorithm to compute the F matrix theref ore looks like this (array and sequence indexes start at 0):
$\mathrm{d} \leftarrow$ MismatchScore
for $i=0$ to length $(B)-1$
$F(i, 0)<-d^{*} i$
for $\mathrm{j}=0$ to length $(\mathrm{A})-1$ $F(0, j)<-d^{*} j$
for $\mathbf{i = 1}$ to length(\mathbf{B})
for $\mathrm{j}=1$ to length(A) \{
Choice1 <-F(i-1,j-1)+S(B(i),A(j))
Choice2 <-F(i-1, j$)+\mathrm{d}$
Choice $3<-F(i, j-1)+d$
$\mathrm{F}(\mathrm{i}, \mathrm{j})<-\max ($ Choice1, Choice2, Choice3)

- Once the F matrix is computed, the bottom right hand corner of the matrix is the maximum score for any alignment.
-To compute which alignment actually gives this score, you can start from the bottom right cell, and compare the val ue with the thr ee possible sources(Choice1, Choice2, and Choice3 above) to see which it came from.

If Choice1, then $\mathrm{A}(\mathrm{j})$ and $\mathrm{B}(\mathrm{i})$ are aligned,
If Choice2, then $B(i)$ is aligned with a gap, and If Choice3, then $A(j)$ is aligned with a gap.

Needleman Wunsch Sequence Alignment

```
AlignmentA <- ""' ; AlignmentB <- "";
<- length(B); j <- length(A);
while( }\textrm{i}>0\mathrm{ AND j > 0) {
    Score <- F(i,j); ScoreDiag <-F(i - 1, j-1);
    ScoreLeft <- F(i, j - 1); ScoreUp <- F(i - 1, j);
    if (Score == ScoreDiag + S(A(j), B(i))) {
        AlignmentA <- A(j) + AlignmentA; AlignmentB <- B(i) + AlignmentB
            i<-i-1;j<-j-1;}
    ese if (Score == ScoreLeft +d) {
            AlignmentA <- A(j) + AlignmentA; AlignmentB <-"" + AlignmentB;
            j<-j-1}
    else if (Score == ScoreUp + d) {
        AlignmentA <- "- + AlignmentA; AlignmentB <- B(i) + AlignmentB;
            i<-i-1}
}
*)
while (i>0) { AlignmentA <-"-" + AlignmentA; AlignmentB <- B(i) + AlignmentB; i<- i-1}
```

Substitution Score
LTUVEN
Substitution matrix (BLOSUM 50 matrix)

Log odds score can be positive (identities, conservative replacements) and negative

Aligning globally using BLOSUM 62

		A	A	E	E	K	K	L	A	A	A
	0	-8	-16	-24	-32	-40	-48	-56	-64	-72	-80
A	-8	4	-4	-12	-20	-28	-36	-44	-52	-60	-68
A	-16	-4	8	-0	-8	-16	-24	-32	-40	-48	-56
R	-24	-12	0	8	0	-6	-14	-22	-30	-38	-46
R	-32	-20	-8	0	8	2	-4	-12	-20	-28	-36
$\mathbf{1}$	-40	-28	-16	-8	0	5	-1	-2	-10	-18	-26
A	-48	-36	-24	-16	-8	-1	4	-2	2	-6	-14

AAE EKKLAAA
AA--RRIA--
Score: -14
Other alignment options? Yes

Local alignment

Local alignment methods find related regions within sequences - they can consist of a subset of the characters within each sequence.

For example, positions 20-40 of sequence A might be aligned with positions 50-70 of sequence B.

This is a more flexible technique than global alignment and has the adv antage that related regions which appear in a different order in the two proteins (which is known as domain shuffling) can be identified as being related.

This is not possible with global alignment methods.

The Smith Waterman algorithm

The Smith-Waterman algorithm (1981) is for determining similar regions between two nucleotide or protein sequences.

Smith-Waterman is also a dynamic programming algorithm and improves on Needleman-Wunsch. As such, it has the desirable property that it is guaranteed to find the optimal local alignment with respect to the scoring system being used (which includesthe substitution matrix and the gapscoring scheme).

However, the Smith-Waterman algorithm is demanding of time and memory resources: in order to align two sequences of lengthsm and n, $\mathrm{O}(\mathrm{mn})$ time and space are required.

As a result, it has largely been replaced in practical use by the BLAST algorithm; although not guaranteed to find optimal alignments, BLAST is much more efficient.

Smith-Waterman Algorithm

The Smith-Waterman algorithm

	Smith-Waterman algorithm	Needleman- Wunsch algorithm Initialization Scoring Traceback First row and first column are set to 0
Negative score is set to 0	First row and first column are subject to gap penalty	
Score can be negative		
	Begin with the highest score, end when 0 is encountered	Begin with the cell at the lower right of the matrix, end at top left cell

1. Create a table of size $(m+1) \times(n+1)$ for sequences \mathbf{s} and \mathbf{t} of lengths m and n,
2. Fill table entries $(1,1: m+1)$ and ($1: n+1,1$) with zeros.
3. Starting from the top left, compute each entry using the recursive relation:
$M_{i, j}=\max \left\{\begin{array}{c}M_{i-1, j-1}+\sigma\left(\mathbf{s}_{i}, \mathbf{t}_{j}\right) \\ M_{i-1, j}+\sigma\left(\mathbf{s}_{i},-\right) \\ M_{i, j-1}+\sigma\left(-, \mathbf{t}_{j}\right) \\ 0\end{array}\right\}$
4. Perf orm the trace-back procedure from the maximum element in the table to the f irst zero element on the trace-back path.

Similarity Matrix

This substitution matrix can be described as: $s\left(a_{i}, b_{j}\right)= \begin{cases}+1, & a_{i}=b_{j} \\ -1, & a_{i} \neq b_{j}\end{cases}$

	Initialize the scoring matrix								
		T	G	T	T	A	C	G	G
	0	0	0	0	0	0	0	0	0
G	0								
G	0								
T	0								
T	0								
G	0								
A	0								
c	0								
T	0								
A	0								
Substitution $S\left(a_{i}, b_{j}\right)= \begin{cases}+3, & a_{i}=b_{j} \\ -3, & a_{i} \neq b_{j}\end{cases}$									
Gap penalty: $W_{k}=k W_{1}$									

Simplified Smith-Waterman algorithm when linear gap penalty function is used

$$
H_{i j}=\max \left\{\begin{array}{l}
H_{i-1, j-1}+s\left(a_{i}, b_{j}\right) \\
H_{i-1, j}-W_{1} \\
H_{i, j-1}-W_{1} \\
0
\end{array}\right.
$$

Step 3: Computing the length of a LCS
$H_{i j}=\max \left\{\begin{array}{l}H_{i-1, j-1}+s\left(a_{i}, b_{j}\right), \\ \max _{k \geq 1}\left\{H_{i-k, j}-W_{k}\right\}, \\ \max _{l \geq 1}\left\{H_{i, j-l}-W_{l}\right\}, \\ 0\end{array} \quad(1 \leq i \leq n, 1 \leq j \leq m)\right.$
where
$H_{i-1, j-1}+s\left(a_{i}, b_{j}\right)$ is the score of aligning a_{i} and b_{j},
$H_{i-k, j}-W_{k}$ is the score if a_{i} is at the end of a gap of length k,
$H_{i, j-l}-W_{l}$ is the score if b_{j} is at the end of a gap of length l,
0 means there is no similaritv un to a_{i} and b_{i}.

UNIVERSITY
CSC317
OF MIAMI

Step 4: Constructing a LCS (Backtracking)
$W_{k}=k W_{1}$
where W_{1} is the cost of a single gap.

Step 4: Constructing a LCS (Backtracking)

Simplified Smith-Waterman algorithm

When linear gap penalty function is used
A linear gap penalty has the same scores for opening and extending a gap:

Linear [edit]
A linear gap penalty has the same scores for opening and extending a gap:
$W_{k}=k W_{1}$
where W_{1} is the cost of a single gap.
 OF MLAMI

Aligning locally using BLOSUM 62

