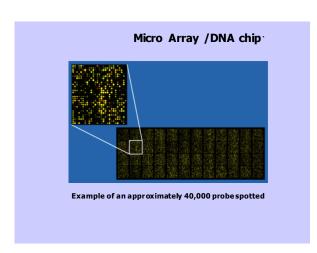


Dept. of Computer Science and Engineering University of Rajshahi www.ru.ac.bd

Dr. Shamim Ahmad


Micro Array /DNA chip

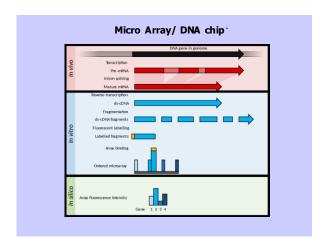
It is collection of microscopic DNA spots attached to a solid surface usually **glass, plastic or silicon biochip**

Each DNA spot contains

- picomoles (10-12 moles) of a specific DNA sequence
- · known as probes or reporters .
- These can be a short section of a gene
- Other DNA element that are used to hybridize a cDNA

The original nucleic acid arrays were macro arrays approximately $9~\text{cm} \times 12~\text{cm}$

Micro Array /DNA chip


cRNA sample (called target)

- · Probe-target hybridization
 - Detected
 - Quantified
 - detection of fluorophore- silver-, or chemiluminescence-labeled targets

Micro Array /DNA chip

Use

- To determine relative abundance of nucleic acid sequences in the target.
- To measure the expression levels of large numbers of genes simultaneously
- detect RNA (most commonly as cDNA after reverse transcription)
- To genotype multiple regions of a genome.

Microarray Analysis Techniques

Microarray manufacturers

- Affymetrix
- Agilent

Comparing two different arrays

- Two different samples
- Hybridized to the same array
 - For adjustments for systematic errors introduced
 - Differences in procedures
 - Dye intensity effects.

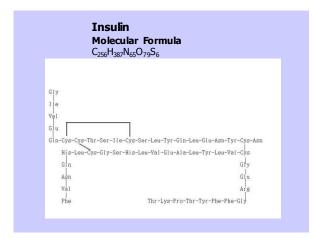
Microarray Analysis Techniques

LIMMA

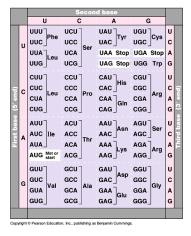
• A set of tools for background correction

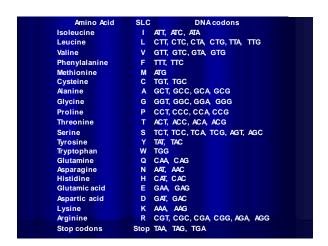
MA plots

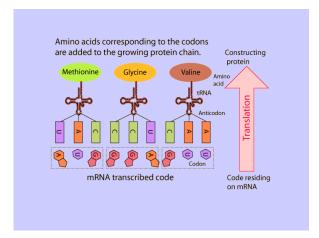
- To plot the data.
- · R, MATLAB, and Excel

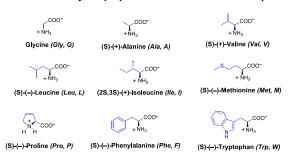

Median polish Algorithm

The median polish is an exploratory data analysis procedure proposed by the statistician John Tukey.


Data Normalization


Protein synthesis


- Messenger RNA (mRNA) molecules direct the assembly of proteins on ribosomes.
- Transfer RNA (tRNA) molecules are used to to deliver amino acids to the ribosome
- Ribosomal RNA (rRNA) then links amino acids together to form proteins.


<u>Codon</u> = 3 letter section of mRNA that codes for one amino acid

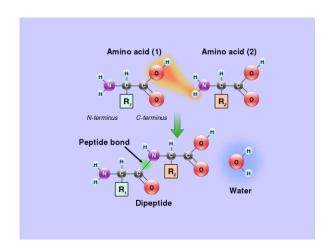
α -Amino acids are classified by the properties of their sidechains.*Nonpolar*:

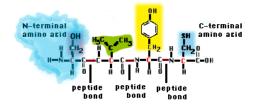
Polar but non-ionizable:

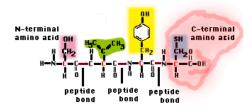
(S)-(-)-Serine (Ser, S) pKa ~ 13 pKa ~ 13 (S)-(-)-Tyrosine (Tyr, Y) pKa ~ 10.1
$$H_3$$
 (S)-(-)-Cysteine (Cys, C) (S)-(-)-Asparagine (Asn, N) pKa ~ 8.2

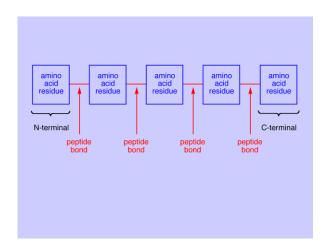
15 16

4


Acidic:


(S)-(+)-Aspartic Acid (Asp. D)
$$Ka \sim 3.6$$
 (S)-(+)-Glutamic Acid (Glu, E) $Ka \sim 4.2$


Basic:


17

- The formation of the peptide bond consumes **energy**
- Which, in living systems, is derived from ATP
- A peptide bond can be broken by **hydrolysis** (the addition of water).
- They can release 8–16 kilojoule/mol of free energy

Definitions of the components: Part 1 – Overview of PTMs

2. Protein translation: The process by which the mRNA template is read by ribosomes to synthesize the corresponding protein molecule on the basis of the three letter codons, which code for specific amino acids.

- 3. Cytosol: A cellular compartment that serves as the site for protein synthesis.
- 4. Signal sequence: A sequence that helps in directing the newly synthesized polypeptide chain to its appropriate intracellular organelle. This sequence is most often cleaved following protein folding and PTM.

Definitions of the components: Part 1 – Overview of PTMs

- 5. Endoplasmic reticulum: A membrane-bound cellular organelle that acts as a site for posttranslational modification of newly synthesized polypeptide chains.
- 6. Cleaved protein: The protein product obtained after removal of certain amino acid sequences such as N- or C-terminal sequences, signal sequence etc.

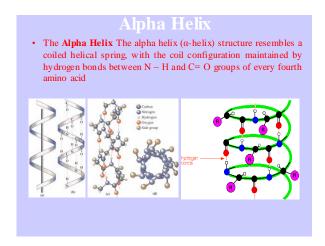
Class of Protein	Function in the Body	Examples
Structural	Provide structural components	Collagen is in tendons and cartilage. Keratin is in hair, skin, wool, and nails.
Contractile	Movement of muscles	Myosin and actin contract muscle fibers.
Transport	Carry essential substances throughout the body	Hemoglobin transports oxygen. Lipoproteins transport lipids.
Storage	Store nutrients	Casein stores protein in milk. Ferritin stores iron in the spleen and liver.
Hormone	Regulate body metabolism and nervous system	Insulin regulates blood glucose level. Growth hormone regulates body growth.
Enzyme	Catalyze biochemical reactions in the cells	Sucrase catalyzes the hydrolysis of sucrose. Trypsin catalyzes the hydrolysis of proteins.
Protection	Recognize and destroy foreign substances	Fibrinogen helps blood clotting

Proteins

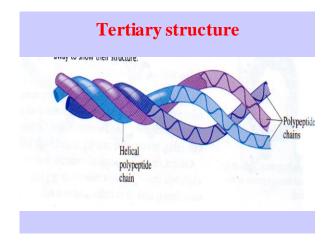
- Proteins account for 50% of the dry weight of the human body.
- Unlike lipids and carbohydrates, proteins are not stored, so they must be consumed daily.
- Current recommended daily intake for adults is 0.8 grams of protein per kg of body weight (more is needed for children).
- Dietary protein comes from eating meat and milk.

Proteins

100,000 different proteins in human body

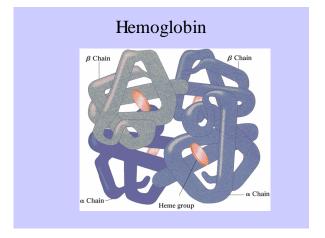

Fibrous proteins:

Insoluble in water – used for structural purposes (Keratin & Collagen).


Globular proteins:

More or less soluble in water – used for nonstructural purposes.

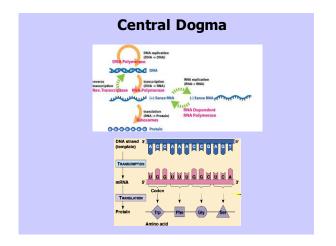
Summary of Structural Levels in Proteins Structural Level Characteristics Primary The sequence of amino acids Secondary The coiled α-helix, β-pleated sheet, or a triple helix formed by hydrogen bonding between peptide bonds along the chain Tertiary A folding of the protein into a compact, three-dimensional shape stabilized by interactions between side R groups of amino acids Quaternary A combination of two or more protein subunits to form a larger, biologically active protein

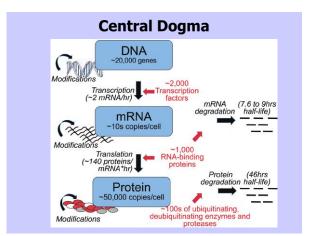


Beta pleated sheet • The beta pleated sheet (β-pleated sheet) secondary structure involves amino acid chains that are almost completely extended.

Quaternary structure

• Quaternary structure is the highest level of protein organization. It is found only in proteins that have structures involving two or more polypeptide chains that are independent of each other — that is, are not covalently bonded to each other. These multichain proteins are often called oligomeric proteins. The quaternary structure of a protein involves the associations among the separate chains in an oligomeric protein.


The Central Dogma was first stated by Francis Crick in 1958:


- "This states that once 'information' has passed into protein it cannot get out again.
- In more detail, the transfer of information from nucleic acid to nucleic acid, or from nucleic acid to protein may be possible,
- But transfer from protein to protein, or from protein to nucleic acid is impossible.
- Information means here the precise determination of sequence, either of bases in the nucleic acid or of amino acid residues in the protein."

Restated in Nature paper published in 1970

The central dogma of <u>molecular biology</u> deals with the detailed residue-by-residue transfer of sequential information. It states that such information cannot be transferred back from protein to either protein or nucleic acid.

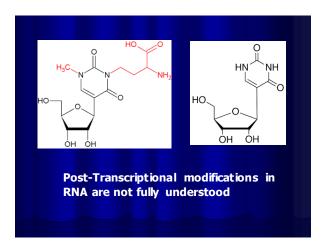
— Francis Crick

General Transfers

- DNA can be copied to DNA (DNA replication)
- DNA information can be copied into mRNA (transcription)
- Proteins can be synthesized using the information in mRNA as a template (translation).

Special Transfer

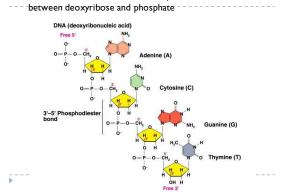
- RNA being copied from RNA (RNA replication, Many Virus)
- DNA being synthesised using an RNA template (reverse transcription, HIV Virus)
- Proteins being synthesised directly from a DNA template without the use of mRNA (In Test Tube,
- E. coli Virus.Ribosome, Mouse.DNA))

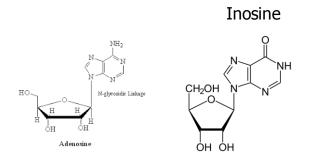

Unknown Transfers

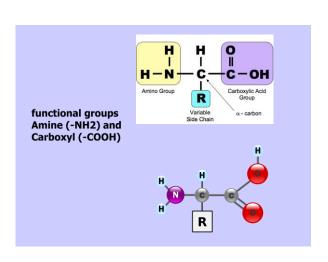
- · A protein being copied from a protein
- Synthesis of RNA using the primary structure of a protein as a template
- DNA synthesis using the primary structure of a protein as a template.

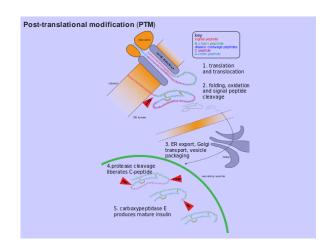
General	Special	Unknown
$DNA \rightarrow DNA$	$RNA \rightarrow DNA$	$protein \rightarrow DNA$
DNA → RNA	$RNA \rightarrow RNA$	protein → RNA
RNA → protein	DNA → protein	protein → protein

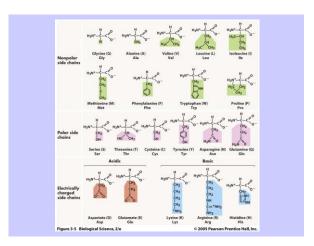
Post-translational modification (PTM)


- Refers to the covalent and generally enzymatic modification of proteins
- Post-translational modifications can occur on the amino acid side chains or at the protein's C- or N- termini.
- They can extend the chemical repertoire of the 20 standard amino acids by modifying an existing functional group or introducing a new one




Post-Transcriptional modifications


Example of DNA Primary Structure


▶ In DNA, A, C, G, and T are linked by 3'-5' ester bonds

