Number Systems

Dept. of Computer Science and Engineering Unlversity of Rajshahl www.ru.ac.bd

Dr. Shamim Ahmad

- Decimal (Base 10)
- 10 digits (0,1,2,3,4,5,6,7,8,9)
- Binary (Base 2)
- 2 digits (0,1)
- Digits are often called bits (binary digits)
- Hexadecimal (Base 16)
- 16 digits (0-9,A,B,C,D,E,F)
- Often referred to as Hex

Number Systems
Octal and Hexadecimal Numbers

Positional Notation

- Each digit is weighted by the base(r) to the positional power
- $N=d_{n-1} d_{n-2} \ldots d_{0} \cdot d_{1} d_{2} \ldots d_{m}$
$=\left(d_{n-1} \times r^{n-1}\right)+\left(d_{n-2} \times r^{n-1}\right)+\ldots+\left(d_{01} \times r^{0}\right)+$ $\left(d_{1} \times r^{1}\right)+\left(d_{2} \times r^{2}\right)+\ldots\left(d_{m} \times r^{m}\right)$
- Example : 872.64 ${ }_{10}$
$\left(8 \times 10^{2}\right)+\left(7 \times 10^{1}\right)+\left(2 \times 10^{0}\right)$ $+\left(6 \times 10^{-1}\right)+\left(4 \times 10^{-2}\right)$
- Example: $1011.1_{2}=$?
- Example : $12 \mathrm{~A}_{16}=$?

Positional Notation (Solutions to Example Problems)

- $872.64_{10}=8 \times 10^{2}+7 \times 10^{1}+2 \times 10^{0}+6 \times 10^{-1}+4 \times 10^{-2}$ $800+70+2+.6+.04$

Positional Notation
 (Solutions to Example Problems)

- 1011.1_{2}

$$
\begin{aligned}
& =1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}+1 \times 2^{-1} \\
= & 8+0+2+1+.5 \\
= & 11.5_{10}
\end{aligned}
$$

Positional Notation
 (Solutions to Example Problems)

- $12 \mathrm{~A}_{16}=1 \times 16^{2}+2 \times 16^{1}+\mathrm{A} \times 16^{0}$
$=256+32+10$
$=298_{10}$

$$
16^{0}=1
$$

$16^{1}=16=2^{4}$
$16^{2}=256=2^{8}$
$16^{3}=4096=2^{12}$

$$
2^{11}=2048
$$

$$
\begin{aligned}
& 2^{12}=4096 \\
& 2^{12}=2048
\end{aligned}
$$

- Subscripts
- 874_{10}
- $\mathrm{AB9}_{(16)}$
- Prefix Symbols
- (None) 874
\%1011
\$A B9
- Postfix Symbols
- AB9H
- If I am only working with one base there is no need to add a symbol.

Conversion from Base R to Decimal

- Use Positional Notation
- $\% 11011011={ }^{10}$
- $\$ 3 \mathrm{~A} 94=?_{10}$

8/5/2019

- \%11011011 = ? ${ }_{10}$
\%11011011
$=1 \times 2^{7}+1 \times 2^{6}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{1}+1 \times 2^{0}$
$=128+64+16+8+2+1$
$=219_{10}$
- $\$ 3$ A94 $=?_{10}$
- \$3A94 $=3 \times 16^{3}+$ Ax 16 $6^{2}+9 \times 16^{1}+4 \times 16^{0}$
$=12288+2560+144+4$
$=15996$

Conversion from Decimal to Base R

- Use Successive Division
- Repeatedly divide by the desired base until 0 is reached
- Save the remainders as the final answer
- The first remainder is the LSB (least significant bit); the last remainder is the MSB (Most significant bit)
- $437_{10}=?_{2}$

$$
=110110101_{2}
$$

- $437_{10}=?_{16}$
$=1 B 5_{16}$

Conversion from Decimal to Binary

- Use Successive Division
- Repeatedly divide by the desired base until 0 is reached
- Save the remainders as the final answer
- The first remainder is the LSB (least significant bit); the las remainder is the MSB (Most significant bit)
- $437_{10}=?$
$437 / 2$ = 218 remainder 1
$218 / 2$ = 109 remainder 0
$109 / 2=54$ remainder 1
$54 / 2=27$ remainder 0
27/2 = 13 remainder 1
13/2 = 6 remainder 1
$6 / 2=3$ remainder 0
$3 / 2=1$ remainder 1
$1 / 2=0$ remainder 1

8/5/2019
CSE, Ralishati Universty
$=110110101_{2}$

Conversion from Decimal to Hexadecimal

- $437_{10}=?_{16}$
$437 / 16=27$ remainder 5
$27 / 16$ = 1 remainder 11 (11=B)
1/16 = 0 remainder 1
- $427_{10}=1 B 5_{16}$

Conversion from Binary to Hex

- Starting at the LSB working left, group the bits by 4 s . Padding of 0 s can occur on the most significant group.
- Convert each group of 4 into the equivalent HEX value.
- \%1101110101100 = \$?

$$
=\$ 1 B A C
$$

Conversion from Hex to Binary

- Convert each HEX digit to the equivalent 4bit binary grouping.
- $\$ \mathrm{~A} 73=\%$?
= \%101001110011

Binary, Octal, and Hexadecimal

\star Binary, Octal, and Hexadecimal are related:
Radix $16=2^{4}$ and Radix $8=2^{3}$
\star Hexadecimal digit $=4$ bits and Octal digit $=3$ bits

* Starting from least-significant bit, group each 4 bits into a hex digit or each 3 bits into an octal digit
* Example: Convert 32 -bit number into octal and hex

3	5	3	0		5	2	3	6	2	4	Octal 32-bit binary Hexadecimal
$11210\|10\| 110$											
E		B	1	6		A	7	9		4	

815/2019

Conversion of Fractions

- Conversion from decimal to binary requires multiplying by the desired base (2)
- $0.625_{10}=?_{2}$
- $\quad=0.101_{2}$

81512019 CSE, Raishani University

Important Properties - cont'd

* How many possible values can be represented

Using n binary digits? $\quad 2^{n}$ values: 0 to $2^{n}-1$
Using n octal digits $\quad 8^{n}$ values: 0 to $8^{n}-1$
Using n decimal digits? $\quad 10^{n}$ values: 0 to $10^{n}-1$
Using n hexadecimal digits 16^{n} values: 0 to $16^{n}-1$
Using n digits in Radix r ? $\quad r^{n}$ values: 0 to $r^{m}-1$
$8 / 512019$
CSE, Raishani University

Addition/Subtraction of Hex Numbers

101011	
$+\quad 1$	
101100	
	101011
+001011	
110110	

- The carry out has a weight equal to the base (in this case 16). The digit that left is the excess (Base - sum).
- \$3A
$+\$ 28$
\$62
- The carry out has a weight equal to the base (in this case 16). The digit that left is the excess (Base - sum).
- Three ways to represent signed numbers
- Sign-Magnitude
- 1s Complement
- 2s Complement

Sign-Magnitude

- For an N -bit word, the most significant bit is the sign bit; the remaining bits represent the magnitude
- $0110=+6$
- $1110=-6$
- Addition/subtraction of numbers can result in overflow (errors) - (Due to fixed number of bits); two values for zero
- Range for n bits: $-\left(2^{n-1}-1\right)$ through $\left(2^{n-1}-1\right)$

1s Complement

- Negative numbers $=\mathrm{N}^{\prime}=\left(2^{n-1}-1\right)-\mathrm{P}$ (where
P is the magnitude of the number)
- For a 5 -bit system, $-7=11111$
-00111
11000
- Range for n bits:-($\left.2^{n-1}-1\right)$ through $\left(2^{n-1}-1\right)$

81/52019
CSE, Raishani University

2s Complement

- Negative Numbers $=\mathrm{N}^{*}=2^{\mathrm{n}}-\mathrm{P}$ (where P is the magnitude of the number)
- For a 5 -bit system, $-7=100000$
-00111
- Another way to form 2 s complement representation is to complement P and add 1
- Range for n bits: -(2^{n-1}) through $\left(2^{n-1}-1\right)$

Numbers Represented with 4-bit Fixed Digit Representation

Summary of Signed Number Representations

- Sign Magnitude - has two values for 0
- - errors in addition of negative and positive numbers
- 1 s complement - two values for 0
- - additional hardware needed to compensate for this
- 2s Complement - representation of choice

85/2019
CSE, Raishahi University

Unsigned/Signed Overflow

- You can detect unsigned overflow if there is a carryout of the MSB.
- You can detect signed overflow if the sum of two positive numbers is a negative number or if the sum of two negative numbers is a positive number. An overflow never occurs in an addition of a negative and a positive number.

8/512019

BCD Codes (Decimal Codes)

- Coded Representations for the the 10 decimal digits
- Requires 4 bits $\left(2^{3}<10<2^{4}\right)$
- Only use 10 combinations of 16 possible combinations

Codes

- Decimal Codes
- BCD (Binary Coded Decimal)
- Weighted Codes (8421, 2421, etc...)
- ASCII Codes
- ASCII (American Standard Code for Information Interchange)
- Unicode Standard
- Unit Distance Codes
- Gray
- Error Detection Codes
- Parity Bit
- Error Correction Codes
- Hamming Code

8/5:2019
CSE, Ralshahi University

BCD Codes (Decimal Codes)

- Weighted Code
- 8421 code
- Most common
- Default

The corresponding decimal digit is determined by adding the weights associated with the 1 s in the code group.
The BCD representation is NOT the binary equivalent of the decimal number - $623_{10}=011000100011$

- 2421, 5421,7536, etc... codes

The weights associated with the bits in each code group are given by the name of the code

- Nonweighted Codes

- 2-out-of-5
- Actually weighted 74210 except for the digit 0
- Used by the post office for scanning bar codes for zip codes
- Has error detection properties

U.S. Postal Service bar code corresponding to the ZIP code 14263-1045.

8/5/2019

Unit Distance Codes

- Important when converting analog to digital
- Only one bit changes between successive integers
- Gray Code is most popular example

Unit Distance Codes

Angular position encoders.
a) Conventional binary encoder. (b) Gray code encoder.

Angular position encoders with misaligned photosensing devices. (a) Conventional binary encoder. (b) Gray code encoder.

From Binary to a Gray-code

1. Copy MSB
2. Add this bit to the next position
3. Record Sum
4. Ignore Carry (if any)
5. Record successive sum until completed

Mirror Image Conversion

8/5/2019

From a Gray-code to Binary

From a Gray-code to Binary

1. Copy MSB
2. Add the Binary MSB to next Significant bit of Gray code
3. Record Sum
4. Ignore Carry (if any)
5. Continue process until LSB is reached

CSE, Rajshah University

Digital Circuit

Excess-3 code

Within the range when 1's complemented, apart from BCD

Character Codes

\nLeftarrow Character sets
\triangleleft Standard ASCII: 7-bit character codes $(0-127)$
\triangleleft Extended ASCII: 8-bit character codes $(0-255)$
$>$ Unicode: 16 -bit character codes $(0-65,535)$
$>$ Unicode standard represents a universal character set

- Defines codes for characters used in all major languages
- Used in Windows-XP: each character is encoded as 16 bits
\rightarrow UTF-8: variable-length encoding used in HTML
- Encodes all Unicode characters
- Uses 1 byte for ASCII, but multiple bytes for other character
* Null-terminated String
\& Array of characters followed by a NULL character
88/52019

Control Characters

* The first 32 characters of ASCII table are used for contro * Control character codes $=00$ to 1F (hexadecimal)
\Rightarrow Not shown in previous slide
\& Examples of Control Characters
\Rightarrow Character 0 is the NULL character \Rightarrow used to terminate a string
\rightarrow Character 9 is the Horizontal Tab (HT) character
\rightarrow Character OA (hex) $=10$ (decimal) is the Line Feed (LF)
$>$ Character OD (hex) $=13$ (decimal) is the Carriage Return (CR)
\Rightarrow The LF and CR characters are used together
- They advance the cursor to the beginning of next line
* One control character appears at end of ASCII table
\star Character 7F (hex) is the Delete (DEL) character

ASCII Codes

	0	1	2	3						9	A	B		c	D	E		F
2	mose	!	"	-	\%)	*	+		,	-	.		1
3	0	1	2	3	5	6		8		9	:	;		<	$=$	>		?
4	®	A	в	c	E	F	c			I	J	K		L	M	N		-
5	P	Q	R	s	U	v	w			Y	z	[\}]	^		
6		a	b	c	e	f	g			i	j	k		1	m	n		-
7	p	q	r	s						y	z	f		1	\}	\sim		

* Examples
\diamond ASCII code for space character $=20$ (hex) $=32$ (decimal)
\& ASCII code for 'L' $=4 \mathrm{C}$ (hex) $=76$ (decimal)
\& ASClI code for ' a ' $=61$ (hex) $=97$ (decimal)

8/552019

Unicode (Bengali)

ठ ড Ђ ๆ অ श দ ধ न प भ द ব ত म य

Detecting Errors		
Sender	7 -bit ASCII character +1 Parity bit	Receiver
	' A ' $=01000001$, Received ' A ' $=01000101$	

* Suppose we are transmitting 7-bit ASCII characters * A parity bit is added to each character to make it 8 bits * Parity can detect all single-bit errors
\diamond If even parity is used and a single bit changes, it will change the parity to odd, which will be detected at the receiver end
Δ The receiver end can detect the error, but cannot correct it because it does not know which bit is erroneous
$\%$ Can also detect some multiple-bit errors
\diamond Error in an odd number of bits

Hamming Code

Number the bits starting from 1: bit 1, 2, 3, 4, 5, etc.
2. Write the bit numbers in binary. 1, 10, 11, 100, 101, etc.
3. All bit positions that are powers of two (have only one 1 bit in the binary form of their position) are parity bits.
4. All other bit positions, with two or more 1 bits in the binary form of their position, are data bits
5. Each data bit is included in a unique set of 2 or more parity bits, as determined by the binary form of its bit position.

- In general each parity bit covers all bits where the binary AND of the parity position and the bit position is non-zero.

Hamming Code

1. Parity bit 1 covers all bit positions which have the least significant bit set: bit 1 (the parity bit itself), 3,5 , 7, 9, etc
2. Parity bit 2 covers all bit positions which have the second least significant bit set: bit 2 (the parity bit itself), $3,6,7,10,11$, etc.
3. Parity bit 4 covers all bit positions which have the third least significant bit set: bits 4-7, 12-15, 20-23 etc.
4. Parity bit 8 covers all bit positions which have the fourth least significant bit set: bits 8-15, 24-31, 4047, etc.

Example

	$\mathbf{p}_{\mathbf{1}}$	$\mathbf{p}_{\mathbf{2}}$	$\mathbf{d}_{\mathbf{1}}$	$\mathbf{p}_{\mathbf{3}}$	$\mathbf{d}_{\mathbf{2}}$	$\mathbf{d}_{\mathbf{3}}$	$\mathbf{d}_{\mathbf{4}}$	$\mathbf{p}_{\mathbf{4}}$	$\mathbf{d}_{\mathbf{5}}$	$\mathbf{d}_{\mathbf{6}}$	$\mathbf{d}_{\mathbf{7}}$
Data word (without parity):			$\mathbf{0}$		$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$		$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{p}_{\mathbf{1}}$	$\mathbf{1}$		0		1		0		1		1
$\mathbf{p}_{\mathbf{2}}$		$\mathbf{0}$	0			1	0			0	1
\mathbf{p}_{3}				$\mathbf{0}$	1	1	0				
$\mathbf{p}_{\mathbf{4}}$								$\mathbf{0}$	$\mathbf{1}$	0	1
Data word (with parity):	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	1	1	0	$\mathbf{0}$	1	0	1

[^0]
Example

Example

-The new data word (with parity bits) is now "10001100101".
-We now assume the final bit gets corrupted and turned from 1 to 0.
-Our new data word is "10001100100";
DHow the Hamming codes were created we flag each parity bit as 1 when the even parity check fails.

Example

	p_{1}	p_{2}	d_{1}	p_{3}	d		d_{3}	d_{4}	p_{4}	d		d_{6}	d_{7}	Parity check	Parity bit
Received data word:	1	0	0	0			1	0	0	1		0	0		
p_{1}	1		0		1			0		1			0	Fail	1
p_{2}		0	0			1		0				0	0	Fail	1
p_{3}				0	1	1		0						Pass	0
p_{4}									0	1		0	0	Fail	1
Checking of parity bits (switched bit highlighted)															

$0 \because:$
0
:日:
Parity bit \square

8/5/2019

Example

	$\mathbf{p}_{\mathbf{4}}$	$\mathbf{p}_{\mathbf{3}}$	$\mathbf{p}_{\mathbf{2}}$	$\mathbf{p}_{\mathbf{1}}$	
Binary	1	0	1	1	
Decimal	8		2	1	$\Sigma=11$

Flipping the 11th bit changes 10001100100 back into 10001100101.

Removing the Hamming codes gives the original data word of 0110101.

Example

$>$ The final step is to evaluate the value of the parity bits
$>$ It goes furthest to the right
$>$ The integer value of the parity bits is 11 , signifying that the 11th bit in the data word (including parity bits) is wrong and needs to be flipped.
-8.

Warning: Conversion or Coding?

* Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a binary code
$\star 13_{10}=(1101)_{2}$
This is conversion
$\star 13 \Leftrightarrow(00010011)_{B C D}$
This is coding
\star In general, coding requires more bits than conversion
* A number with n decimal digits is coded with $4 n$ bits in BCD

How Much Memory?

- How many bits do I need if I want to distinguish between 8 colors?

$$
\begin{aligned}
& 2^{x-1}<8<=2^{x} \\
& x=3(3 \text { bits are needed })
\end{aligned}
$$

- How many bits do I need if I want to represent 16 million different colors?
$2^{x-1}<16$ million $<=2^{x}$
$16 M=1 M \times 16=2^{20} \times 2^{4}=2^{24}$
$x=24(24$ bits are needed $)$

[^0]: ${ }^{8 / 512019}$
 Calculation of Hamming code parity bits

