

Dept. of Computer Science and Engineering University of Rajshahi www.ru.ac.bd

Dr. Shamim Ahmad

Logic Families

- RTL Resistor-Transistor Logic
- DTL Diode-Transistor Logic
- TTL Transistor-Transistor Logic
- ECL Emitter-Coupled Logic
- MOS Metal-oxide semiconductor
- CMOS Complementary MOS

Diode based Logic

Diode based Logic

DTL

Bipolar Digital Gate Circuits

- Choice of logic family for design of a specific digital system influenced by many factors.
 - Need for low power

 - High speed
 Availability of more complex functions (MBI)
 - Compatibility with other parts of the system
 - cost
- Many system designs mix logic families - e.g. TTL and CMOS

 In the mid – late 1960's use of resistors, diodes and
transistors began to disappear
 Discrete components phased out due to new
fabrication processes
 Processes where entire circuits could be made onto one obin
one crip
 The first to appear were small scale integration SSI
 – 1 to 10 gates or memory elements packaged as a unit
– packaged as DIL package
 MSI medium scale integration
 – 10 to 100 gates or memory elements packaged as a
unit
LSI large scale integration
 – 100 to 10000 gates or memory elements packaged as
a unit
 For MSI and LSI the popular logic family is TTL

DTL NAND

DTL

The extra transistor adds amplification to increase fan-out

- kept in the active region when output transistor is saturated

• Modified circuit can supply large amount of base current to the output transistor.

- Thus output transistor can now draw a large

DTL

Part of the collector current comes from the conducting diodes in the loading gates (when the output transistor is saturated).

 ⇒ an increase in allowable collector saturated current allows more loads to be connected to the output.
 ⇒ increase fan-out capability.

DTL

- · Extra diode is used to provide biasing for output transistor
- Avoids use of resistors
 and also the need for separate negative power supply

DTL -> TTL

- The first change from DTL to TTL:
- In IC's it is easier to fabricate transistors than diodes.
- When diodes are required transistors are used
- ⇒ Usual to use the base-emitter junction of BJT
- ∴ base serving as the anode
- ∴ emitter serving as the cathode
- ∴ collector tied to the base

TTL: NAND

TTL: NAND

TTL: NOR/NOT

TTL NOR gate implementation

TTL: Multi-Emitter Transistor

TTL AND gate implementation

TTL: Multi-Emitter Transistor

· Note anodes of the input diodes are common - Thus can be realised in the form of a multiple-emitter transistor

TTL: Increase Switching

• The remaining changes in the evolution from DTL to TTL made to achieve increased speed. . When circuit is to switch from a low-output to a highoutput state.

- Q1 must go from saturation to cut-off
- Requires removal of charge from base of Q1

IIL: Increase Switching **Speed**

- Therefore this switching action is brought about by Q2 - Q2 going from saturation to cut-off
- The only path for discharging the base of Q1 through resistor R1.
- · Speed of discharge is limited by time constant of circuit

TTL : Faster Switching

To obtain faster switching

- Take advantage of input diodes being realised
- in terms of transistors
- change the circuit the following

How to increase speed?

Whatever is done to the value of the resistors

• Speed is ultimately limited by the time required to pull the output transistors out of saturation.

• 74, 74L and 74H series all operate with saturated switching

- many of the transistors, when conducting will be in a saturated condition

 As has been seen this causes a saturation delay (storage delay), when switching from ON to OFF

 limits the circuit's switching speed.

Schottky TTL, 74S series

In Schottky TTL (STTL) • Transistors kept out of saturation by using Schottky barrier diodes (SD) • Formed by a junction of a metal and semiconductor

- conventional diode with a junction of p-type and n-type semiconductor material
- SD connected between the base and the
- collector

- Do not allow the transistors to go as deeply into saturation

- SD has a forward voltage drop of 0.4V

Schottky TTL, 74S series

- When the Collector-Base junction becomes forward biased at the on-set of saturation
 - ⇒ SD will conduct, diverting some input current away from base.
- ⇒ this has effect of reducing the excess base current.
 ⇒ decreases saturation (storage time) delay at turn-off

- 74S00 NAND has average propagation delay of 3 nsecs – twice as fast as the 74H00
- makes the 74H series redundant nowadays

Transistor switches

- · Logic circuits are built with transistors
- We will assume a transistor operates as a simple switch controlled by a logic signal x
- The most popular type of transistor for implementing a simple switch is the metal oxide semiconductor field effect transistor (MOSFET)
- Two types of MOSFETs

 N-channel (NMOS)
- N-channel (NMOS)
 P-channel (PMOS)
- Early circuits relied on NMOS or PMOS transistors, but not both
- Current circuits use both NMOS and PMOS transistors in a configuration called *complementary* MOS (CMOS)

Electrical & Computer Engineering Dr. D. J. Jackson Lecture 13-3

NMOS transistor as a switch

- If V_a is low, there is no connection between the source and the drain
- V_G = "high" _<u>1</u>_____ ______ V_D
- If V_G is low, there is no connection between the source and the drain terminals. The transistor is turned off.

· The transistor operates by

controlling the voltage V_g at

 If V_G is high, the transistor is turned on and acts as a closed switch between the source and drain terminals.

PMOS transistor as a switch

x="high" x="low"

PMOS transistor as a switch

- The transistor operates by controlling the voltage V_g at the gate terminal
- If V_g is high, there is no connection between the source and the drain terminals. The transistor is turned off.
- If V_g is low, the transistor is turned on and acts as a closed switch between the source and drain terminals.

NMOS and PMOS in logic circuits

NMOS and PMOS in logic circuits

- When the NMOS transistor is turned on, its drain is *pulled down to Gnd*
- When the PMOS transistor is turned on, its drain is *pulled up to V_{DD}*
- Because of the way transistors operate:
 An NMOS transistor cannot be used to pull its drain terminal completely up to V_{DD}
 - A PMOS transistor cannot be used to pull its drain terminal completely down to Gnd
- Therefore, NMOS and PMOS transistors are commonly used in pairs in CMOS circuits

CMOS logic gates

- A CMOS logic gate involves NMOS transistors in a *pull-down network* (PDN) and PMOS transistors in a *pull-up network* (PUN)
- The functions realized by the PDN and PUN networks are complements of one another
- The PDN and PUN have equal numbers of transistors, which are arranged so that the two networks are duals of one another
 - Wherever the PDN has NMOS transistors in series, the PUN has PMOS transistors in parallel, and vice versa

CMOS NOT gate

CMOS NAND gate

CMOS NOR gate

CMOS AND gate

CMOS OR gate

