

Dopt of Computer Sclence and Englneering Unlversily of Rajshahl wnww.ruac.bd

Dr. Shamim Ahmad

- Combinational and Sequential Circuits

Combinational Circuit:

- Output only depends on the present

Logic Circuit $\left\{\begin{array}{c}\begin{array}{c}\text { combination of inputs } \\ \text { Specified by a set of Boolean Functions } \\ \text { Sequential Circuit: } \\ \text { Output depends on the input and the st }\end{array}\end{array}\right.$
Output depends on the input and the state of the storage (past inputs)

- Block Diagram of Combinational Circuits

Procedure to Obtain the Output Boolean Functions from a Logic Diagram

1. Label all gate outputs that are a function of input variables with arbitrary symbol. Determine the Boolean functions for each gate output.
2. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates.
3. Repeat the process outline in step 2 until the outputs of the circuits are obtained
4. By repeated substitution of previously defined functions, obtain the output Boolean function in terms of input variables.

- Procedure Example

$$
\begin{array}{ll}
& F_{2}=A B+A C+B C \\
\text { Step 1: } & T_{1}=A+B+C \\
& T_{2}=A B C \\
& \\
\text { Step 2: } & T_{3}=F_{2}{ }^{\prime} T_{1} \\
& F_{1}=T_{3}+T_{2} \\
& F_{1}=T_{3}+T_{2}=F_{2}{ }^{\prime} T_{1}+A B C \\
\text { Step 3-4: } & =(A B+A C+B C)^{\prime}(A+B+C)+A B C \\
& =A^{\prime} B C^{\prime}+A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}+A B C
\end{array}
$$

- Procedure Example

	Procedure							
	A	B	C	F_{2}	$\mathrm{~F}_{2}^{\prime}$	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Truth Table for Example

Boolean Identity Group I

- Most Boolean identities have an AND (product) form as well as an OR (sum) form. We give our identities using both forms. Our first group is rather intuitive:

Identity Name	AND Form	OR Forn
Identity Law	$1 x=x$	$0+x=x$
Null Law	$0 x=0$	$1+\mathbf{x}=1$
Idempotent Law	$x x=x$	$x+x=x$
Inverse Law	$\mathbf{x} \bar{x}=0$	$\mathbf{x}+\bar{x}=1$

Boolean Identity Group II

- Our second group of Boolean identities should be familiar to you from your study of algebra:

$\begin{aligned} & \text { Identity } \\ & \text { Name } \end{aligned}$	$\begin{aligned} & \text { and } \\ & \text { Form } \end{aligned}$	$\begin{gathered} \text { or } \\ \text { Form } \end{gathered}$
Commutative Law Associative Lav Distributive Law	$\begin{gathered} x y=y x \\ (x y) z=x(y z) \quad(x+z) \\ x+y z=(x+y)(x+z) \end{gathered}$	$\begin{gathered} x+y=y+x \\ (x+y)+z=x+(y+z) \\ x(y+z)=x y+x z \end{gathered}$
c17 595		3-17

Boolean Identity Group III

- Our last group of Boolean identities are perhaps the most useful.
- If you have studied set theory or formal logic, these laws are also familiar to you.

$\begin{gathered} \text { Identity } \\ \text { Name } \end{gathered}$	AND Form	$\begin{aligned} & \text { OR } \\ & \text { Form } \end{aligned}$
Absorption Law DeMorgan's Law	$\begin{aligned} x(x+y) & =x \\ (\overline{x y}) & =\bar{x}+\bar{y} \end{aligned}$	$\begin{aligned} & x+x_{Y}=x \\ & (x+y)=\bar{x} \bar{y} \end{aligned}$
Double Complement Law	$\overline{(\bar{x}})=\mathrm{x}$	

De Morgan's Law

- Sometimes it is more economical to build a circuit using the complement of a function (and complementing its result) than it is to implement the function directly
- DeMorgan's law provides an easy way of finding the complement of a Boolean function

$$
\overline{(x y)}=\bar{x}+\bar{y} \quad \text { and } \quad(\overline{x+y})=\bar{x} \bar{y}
$$

Example using Boolean Identity

- We can use Boolean identities to simplify the function:
$(x+y)\left(x^{\prime}+y\right)$
$=x x^{\prime}+x y+y x^{\prime}+y y$ Distributive Law
$=0+x y+y x^{\prime}+y \quad$ Inverse \& Idempotent Law
$=x y+y x^{\prime}+y \quad$ Identity Law
$=y\left(x+x^{\prime}\right)+y \quad$ Distributive Law
$=y(1)+y \quad$ Inverse Law
$=y+y \quad$ Identity Law
$=\mathrm{y} \quad$ Idempotent Law
CIT 595
3-19

Standard or Canonical Form

- There are two canonical forms for Boolean expressions: sum-of-products and product-of-sums
- Recall the Boolean product is the AND operation and the Boolean sum is the OR operation.
- In the sum-of-products form, ANDed variables are ORed together.
$>$ For example: $\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\boldsymbol{x y}+\mathbf{x z}+\mathbf{y z}$
- In the product-of-sums form, ORed variables are ANDed together.
$>$ For example: $F(x, y, z)=(x+y)(x+z)(y+z)$

Conversion to Sum-of-Products Form

- It is easy to convert a function to sum
of-products form using its truth table
- We are interested in the values of the variables that make the function "true (i.e. output 1)
- Using the truth table, we list the values of the variables that result in a true value

The variables corresponding to row with output 1 are "ANDed"
If the variable's input value is 1
then it is written as it is else the then it is written as it is else the written

- Each group of variables is then "Ored" together
OIT 595

Conversion to Sum-of-Products form (contd..)

- The sum-of-products form for function is:
$\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{x} \overline{\mathbf{z}}+\mathbf{y}$

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{x} \overline{\mathbf{z}}+\mathbf{y}$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Note: This function is not in simplest
terms. It was just show how the
function can be rewritten in canonical
sum-of-products form.
C17 $595 \quad 3 \cdot 25$

Conversion to Product-of-Sums

- We are interested in the values of the variables that make the function "false" (i.e. output 0)

Using the truth table, we list the values of the variables that result in a false value
The variables corresponding to row with output 0 are "ORed"

- If the variable's input value is then it is written as it is else the complement of that variable is written
$\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{x} \overline{\mathbf{z}}+\mathbf{y}$

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{x} \overline{\mathbf{z}}+\mathbf{y}$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- Each group of variables is then "ANDed" together

OIT 595

Conversion to Product-of-Sums (contd..)

- The sum-of-products form for function is:

$$
(x+y+z) \cdot(\underbrace{x+y+\bar{z}}) \cdot(\bar{x}+y+\bar{z})
$$

One ORed Group is
known as Maxterm
$\mathbf{F}(\mathbf{x}, \mathbf{Y}, \mathbf{z})=\mathbf{x} \overline{\mathbf{z}}+\mathbf{y}$

\mathbf{x}	y	\mathbf{z}	$\mathrm{x} \overline{\mathbf{z}}+\mathrm{y}$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Logic Gate

- We have looked at Boolean functions in abstract terms
- In this section, we see that Boolean functions are implemented in digital computer circuits are called gates
- A gate is an electronic device that produces a result based on one or more input values
$>$ In reality, gates consist of one to six transistors, but digital designers think of them as a single unit
$>$ Integrated circuits contain collections of gates suited to a particular purpose

Basic Gates

- The three simplest gates are the AND, OR, and NOT gates

- They correspond directly to their respective Boolean operations, as you can see by their truth tables

XOR Gate

- Another very useful gate is the exclusive OR (XOR) gate
- The output of the XOR operation is true only when the values of the inputs differ

- 4 Possible Operations for Addition of Two Binary Digits
0

0

1
1
$+0$
$\frac{+1}{10}$

- Half Adder

$$
S=x^{\prime} y+x y^{\prime}
$$ $C=x y$

x	y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
Half Adder Truth Table			

Half Adder Truth Table

$$
\begin{aligned}
& S=x^{\prime} y+x y^{\prime} \\
& C=x y
\end{aligned}
$$

- Half Adder

Binary Multiplier

- Full Adder

1. Full adders perform the arithmetic sum of three bits
2. Full adders is implemented by a 3-input 2-output combinational circuit
3. Truth Table:

x	y	z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Kmap for Sum-Of-Product Form

Minterm Example with Two variables

- The output values placed in each cell of the matrix are derived from the "minterms" of a Boolean function
- A minterm is a product term that contains all of the function's variables exactly once, either complemented or not complemented
- For example, the minterms for a function having the inputs x and y are: $\bar{x} \bar{Y}, \bar{x} y, x \bar{Y}$, and $X Y$

Note: If variable input is 1 , then it is written as it is else the complement of that variable is written

Minterm Example with Three variables

Similarly, a function having three inputs, has the minterms that are shown in this diagram	Minterm	x	\%	z
	$\bar{X} \bar{Y} \bar{z}$	0	0	0
	$\overline{\mathrm{X}} \mathrm{X} \mathrm{Z}$	0	0	1
	$\overline{\mathrm{x}} \mathrm{Y} \overline{\mathrm{z}}$	0	1	0
	$\overline{\mathrm{x}} \mathrm{X} \mathrm{z}$	0	1	1
	x $\bar{Y} \bar{z}$	1	0	0
	X $\bar{Y} \mathbf{Z}$	1	0	1
	$\mathrm{XY} \overline{\mathrm{z}}$	1	1	0
	xyz	1	1	1

OIT 595 ${ }^{3-40}$

Kmap Cell using SOP form: Example 1

- A Kmap has a cell for each minterm
- This means that it has a cell for each line for the truth table of a function

CIT 595
The truth table for the function $F(x, y)=x y$ is shown at the right along with its corresponding Kmap

3-41

Kmap Cell using SOP Form: Example 2

- As another example, we give the truth table and Kmap for the function,
$F(x, y)=x+y$
- This function is equivalent to the OR of all of the minterms that have a value of 1 (Sum of Product Form). Thus:

$$
F(X, Y)=X+Y=\bar{X} Y+X \bar{Y}+X Y
$$

Kmap Simplification for Two Variables using SOP Form

- Of course, the minterm function that we derived from our Kmap was not in simplest terms > That's what we started with in this example
- We can, however, reduce our complicated expression to its simplest terms by finding adjacent 1 s in the Kmap that can be collected into groups that are "powers of two"
- In our example, we have two such groups
- Can you find them?

CIT 595

Reduced Expression for Example 2

- In the "green" group (vertical), it does not matter what value x has, hence the group is only dependent on variable y
- Similarly in the "pink" group (horizontal), it does not matter what value y has, the group is only dependent on variable x
- Hence the Boolean function reduces to $x+y$

\[

\]

Ort 595

Kmap Simplification for Two Variables
using SOP Form

- The best way of selecting two groups of 1 s form our simple Kmap is shown below
- We see that both groups are powers of two and that the groups overlap.
- The next slide gives guidance for selecting Kmap groups

$$
\begin{array}{c|c|c|}
\hline & y & 0 \\
x & 0 & 1 \\
0 & 0 & 1 \\
\cline { 2 - 3 } & 1 & 1 \\
\cline { 2 - 3 } & & 1
\end{array}
$$

cit 595

Rules for Kmap Simplification using Sum of Products Form (SOP)
The rules of Kmap simplification are:

- Groupings can contain only 1s; no 0s
- Groups can be formed only at right angles; diagonal groups are not allowed
- The number of 1 s in a group must be a power of 2 - even if it contains a single 1
- The groups must be made as large as possible
- Groups can overlap and wrap around the sides of the Kmap

Kmap with Three Variables (SOP form)

- A Kmap for three variables is constructed as shown in the diagram below
- We have placed each minterm in the cell that will hold its value
> Notice that the values for the $y z$ combination at the top of the matrix form a pattern that is not a normal binary sequence
- A Kmap must be ordered so that each minterm differs only in one variable from each neighboring cell hence 11 appears before 10 - Rule!! (will help simplification)

19595

Kmap with Three Variables (SOP Form)
Note:

- Thus, the first row of the Kmap contains all minterms where x has a value of zero
- The first column contains all minterms where y and z both have a value of zero

- This grouping tells us that changes in the variables x and y have no influence upon the value of the function: They are irrelevant
- This means that the function,

$$
F(X, Y, Z)=\bar{X} \bar{Y} \bar{Z}+\bar{X} Y Z+X \bar{Y} \bar{Z}+X Y Z
$$

$$
\text { reduces to } F(X, Y, Z)=Z
$$

You could verify this reduction with identities or a truth table.	$00 \quad 011110$				
	0	0	1	1	p
	1	0	1	1	b

Kmap - Three Variable (SOP Form): Example 1

- Consider the function:

$$
F(X, Y, Z)=\bar{X} \bar{Y} Z+\bar{X} Y Z+X \bar{Y} Z+X Y Z
$$

- Its Kmap is given below:
-What is the largest group of 1 s that is a power of 2 ?

CIT 595

Kmap - Three Variable (SOP Form): Example 2

- Now for a more complicated Kmap. Consider the function:
$F(X, Y, z)=\bar{X} \bar{Y} \bar{z}+\bar{X} \bar{Y} Z+\bar{X} Y Z+\bar{X} Y \bar{z}+X \bar{Y} \bar{z}+X Y \bar{Z}$
- Its Kmap is shown below. There are (only) two groupings of 1 s .
$>$ Can you find them?

CIT 595

Kmap - Three Variable (SOP form): Example 2

- In this Kmap, we see an example of a "group that wraps around the sides" of a Kmap.
- This group tells us that the values of x and y are not relevant to the term of the function that is encompassed by the group
$>$ What does this tell us about this term of the function? - It is dependent on \bar{Z}

What about the
green group in
the top row?

	$\begin{array}{llll}00 & 01 & 11 & 10\end{array}$			
0	1	1	1	1
1	1.	0	0	1

CIT 595

Kmap - Three Variable (SOP): Example 2

- The "green group" in the top row tells us that only the value of x is significant in that group.
- We see input value of x is 0 i.e. minterm is complemented in that row, so the other term of the reduced function is \bar{x}
- Our reduced function is: $F(x, y, z)=\bar{x}+\bar{z}$

Recall that we had
six minterms in our
original function !!
The function is
considerably
minimized

CIT 595

Kmap Simplification for Four Variables (SOP Form)

- The model can be extended to accommodate the 16 minterms that are produced by a four-input function
- This is the format for a 16 -minterm Kmap

	00	01	11	10
00	W̄X̄X̄z	W̄X̄Y z	W̄XXZ	$\bar{W} X \bar{Y} \bar{z}$
01	$\overline{\mathrm{W}} \mathrm{X} \overline{\mathrm{Y}} \overline{\mathrm{z}}$	$\overline{\mathrm{W}} \mathrm{X} \overline{\mathrm{Y}} \mathrm{z}$	W̄XYz	$\bar{W} X Y \bar{z}$
11	wx $\overline{\mathrm{Y}}$ ̄	wxyz	wxyz	WXY \bar{z}
10	wX̄Y \bar{z}	w $\bar{X} \bar{Y} Z$	WX̄YZ	WX̄Y \bar{z}

Kmap Four Variables (SOP Form) Example

- We have populated the Kmap shown below with the nonzero minterms from the function:
$\bar{z}(W, X, Y, z)=\bar{W} X \bar{Y} \bar{z}+\bar{W} \bar{X} \bar{Y} z+\bar{W} \bar{X} Y \bar{z}$
$+\bar{W} X X \bar{z}+w \bar{X} \bar{y} \bar{z}+w \bar{X} \bar{Y} \bar{z}+w \bar{X} y \bar{z}$
\rightarrow Can you identify (only) three groups in this Kmap?

Recall the
Rules of
Simplification

Kmap Four Variables (SOP Form) Example

- The three groups consist of:
$>$ A purple group entirely within the Kmap at the right
A pink group that wraps the top and bottom
- A green group that spans the corners
- Thus we have three terms in our final function:
$\boldsymbol{F}(\mathbf{w}, \mathbf{x}, \mathbf{y}, z)=$ $\bar{X} \bar{Y}+\bar{X} \bar{z}+\bar{W} y \bar{z}$

or 595 3.56

Choosing Kmap Groups

- It is possible to have a choice as to how to pick groups within a Kmap, while keeping the groups as large as possible
- The (different) functions that result from the groupings below are logically equivalent

\[

\]

Don't Care Conditions

- Real circuits don't always need to have an output defined for every possible input
- For example, some calculator displays consist of 7 segment LEDs. These LEDs can display $2^{7}-1$ patterns, but only ten of them are useful
- If a circuit is designed so that a particular set of inputs can never happen, we call this set of inputs a don't care condition
- They are very helpful to us in Kmap circuit simplification

CIT 595

Don't Care Example (SOP Form)

- In a Kmap, a don't care condition is identified by an X in the cell of the minterm(s) for the don't care inputs, as shown below
- In performing the simplification, we are free to include or ignore the X s when creating our groups
C17 595

W_{x}^{y}	00	01	11	10
00	\times	1	1	\times
01		\times	1	
11	\times		1	
10			1	

Don't Care Example (SOP Form)

- In one grouping in the Kmap below, we have the function

$$
F(W, X, Y, Z)=\bar{W} \bar{X}+Y Z
$$

OIT 595 3-60

Don't Care Example w/ Different Grouping

- A different grouping gives us the function:

$$
\bar{F}(W, X, Y, z)=\bar{W} Z+Y Z
$$

	00	01	11	10
00	\times	1	1	\times
01		\times	1	
11	\times		1	
10			1	

Don't Care Condition Example

- The truth table of: $\quad F(W, X, Y, z)=\bar{W} Z+Y Z$ is different from the truth table of:

$$
F(W, X, Y, Z)=\bar{W} \bar{X}+Y Z
$$

- However, the values for which they differ, are the inputs for which we have don't care conditions

Kmap using Product-of-Sum (POS) Form

- The output values placed in each cell are derived from the "maxterm" of a Boolean function
- A maxterm is a sum term that contains all of the function's variables exactly once, either complemented or not complemented

Maxterm Example				
	X	Y	Maxterm	
	0	0	$X+Y$	
	0	1	$X+Y^{\prime}$	
	1	0	$X^{\prime}+\mathrm{Y}$	
	1	1	$X^{\prime}+Y^{\prime}$	
Note: If variable input is 0 , then it is written as it is else the complement of that variable is written				
Oir 595 - ${ }^{\text {3.65 }}$				

Binary Alder-Suhtractor

Full Adder

1. Full adders perform the arithmetic sum of three bits
2. Full adders is implemented by a 3 -input 2 -output combinational circuit
3. Truth Table:

x	y	z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Kmap Rules using Product-of-Sum Form

- Groupings can contain only 0s; no 1s
- Groups can be formed only at right angles; diagonal groups are not allowed
- The number of $0 s$ in a group must be a power of 2 - even if it contains a single 0
- The groups must be made as large as possible
- Groups can overlap and wrap around the sides of the Kmap
- Use don't care conditions when you can

Binary Adder-Suhtractor

Binary Adder-Subtractor

- SOP Logic Implementations of Full Adders

Binary Adder-Suhtractor

- Full Adder Implementation with Two Half Adders and an OR Gate

Binary Adder-Suhtractor

- Binary Adders

1. Binary adders perform the arithmetic sum of two numbers
2. Binary adders can be constructed with full adders connected in cascade

Binary Alder-Subtractor

$■$ 4-bits Binary Adders					
Subscript:	3	2	1	0	
Input Carry	0	1	1	0	C_{i}
Augend	1	0	1	1	A_{i}
Addend	+0	0	1	1	B_{i}
Sum	1	1	1	0	S_{i}
Output Carry	0	0	1	1	C_{i+1}
4-bit Addition Example					

Binary Adder-Suhtractor

Binary Alder-Subtractor

- Carry Propagation Delay:

N -bit adder has 2 n gate carry propagation delay !!

Binary Adder-Sulbtractor

- Carry Lookahead: Reduce Carry Propagation Delay

$$
\left\{\begin{array} { l }
{ P _ { i } = A _ { i } \oplus B _ { i } } \\
{ G _ { i } = A _ { i } B _ { i } }
\end{array} \rightarrow \left\{\begin{array}{c}
S_{i}=P_{i} \oplus C_{i} \\
C_{i+1}=G_{i}+P_{i} C_{i}
\end{array}\right.\right.
$$

Binary Alder-Sultractor

- Carry Lookahead: Carry Bits
$\mathrm{C}_{0}=$ Input Carry
$C_{1}=\left(G_{0}+P_{0} C_{0}\right.$
$C_{2}=G_{1}+P_{1} C_{1}=G_{1}+P_{1}\left(G_{0}+P_{0} C_{0}\right)=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0}$
$C_{3}=G_{2}+P_{2} C_{2}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0}$

Binary Adder-Sulhtractor

Binary Adder-Subtractor

- 4-bit Carry Lookahead Adder

Binary Alder-Suhtractor

n-bits Binary Adders (Carry look Ahead)

Binary Alder-Sulbtractor

- Binary Subtractor

1. Implement subtraction with 2 's complement number system
2. $A-B=A+(-B)=A+1$ 'sc $(B)+1$
3. Implement 1 'sc with XOR gates:

Binary Adder-Sulhtractor

Binary Alder-Sulbtractor

- Overflow: When two numbers of n digits each are added and the sum occupies $n+1$ digits, we say that an overflow occurred.
8-bit 2'sc number presents [-128, +127]

