An \boldsymbol{n}-to- $\mathbf{2 n}$-line decoder symbol

Dopt of Computer Sclonce and Englneering Unlversily of Rajshahl wnw.ruac.bd

Dr. Shamim Ahmad

2-to-4 Decoder

(b)

Decoder Expansion

Decoder with enable: 2-to-4

 and two or-gates.

Implementing a Binary Adder Using a Decoder

$f 1(x 2, x 1, x 0)=\Pi M(0,1,3,5)$
$f 2(x 2, x 1, x 0)=\Pi M(1,3,6,7)$
(a) Using output or-gates.
(b) Using output nor-gates.

A 3-to-8-line decoder using nand-gates. (a) Logic diagram (b) Truth table (c) Symbol

Realization of the

 Boolean expressions$$
\Pi M(0,1,3,4,7)=
$$ ПМ(2,5,6)

and
$f 2(x 2, x 1, x 0)=$ $\Pi M(1,2,3,4,5,6)=$ ПМ(0,7)
with a
3-to-8-line decoder and two nand-gates.

A decoder realization of $f 1(x 2, x 1, x 0)=\operatorname{Em}(0,2,6,7)$ and
$f 2(x 2, x 1, x 0)=\Sigma m(3,5,6,7)$
(a) Using output and-gates.
(b) Using output nand-gates.

Nand-gate 2-to-4-line decoder with an enable input (a) Logic diagram
(b) Compressed truth table. (c) Symbol.

And-gate 2-to-4-line decoder with an enable input. (a) Logic diagram
(b) Compressed truth table (c) Symbol.

A 4-to-16-line decoder constructed
from 2-to-4-line decoder

A 2n-to-1-line Multiplexer symbol

A Multiplexer tree to form a 16-to-1-line Multiplexer

A 4-to-1-line multiplexer. (a) Logic diagram (b) Compressed truth table. (c) Symbol

E	S_{1}	S_{2}	f
0	x	x	0
1	0	0	I_{0}
1	0	1	I_{1}
1	1	0	I_{2}
1	1	1	I_{3}

Realization of a three-variable function using a
8-to-1-line Multiplexer.
(a) Three-variable truth table
(b) General realization.

x	y	z	f
0	0	0	f_{0}
0	0	1	f_{1}
0	1	0	f_{2}
0	1	1	f_{3}
1	0	0	f_{4}
1	0	1	f_{5}
1	1	0	f_{6}
1	1	1	f_{7}

(a)

Realization of
$f(x, y, z)=\Sigma m(0,2,3,5)$
(a) Truth table
(b) 8-to-1-line multiplexer realization.

x	y	z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

(a)

(b)

A general realization of a 3-variable Boolean function using a 4-to-1-line multiplexer.

Realization of $f(x, y, z)=\Sigma m(0,2,3,5)$ using a
4-to-1-line multiplexer.

Obtaining multiplexer realizations using Karnaugh maps. (a) Cell groupings corresponding to the data line functions. (b) Karnaugh maps for the Ii subfunctions

Using Karnaugh maps to obtain multiplexer realizations under various assignments to the select inputs.
(a) Applying input variables y and z to the $S 1$ and $S 0$ select lines. (b) Applying input variables x and y to the $S 0$ and $S 1$ select lines.

Realization of $f(x, y, z)=\Sigma m(0,2,3,5)$
(a) Karnaugh map.
(b) $I 0, I 1, I$, and B submaps.

Alternative realizations of $f(x, y, z)=\Sigma m(0,2,3,5)$. (a) Applying input variables y and z to the $S 1$ and $S 0$ select lines. (b) Applying input variables x and y to the $S 0$ and $S 1$ select lines.

A select line assignment and corresponding data line functions for a multiplexer realization of a four-variable function.

Using a four-variable Karnaugh map to obtain a Boolean function realization with a 4-to-1-line multiplexer.

Realizations of $f(w, x, y, z)=\Sigma m(0,1,5,6,7,9,12,15)$ (a) Karnaugh map. (b) Multiplexer realization.

TL/F/654
Order Number 54151 ADMQB, 54151 AFMQB , DM54151AJ, DM54151AW or DM74151AN See NS Package Number J16A, N16E or W16A

Demultiplexer.

Encoders

Encoder Example

- Example: 8 -to-3 binary encoder (octal-to-binary)

An 8-to-3-line encoder.

Encoder Example (cont.)

4-to-2 Priority Encoder (cont.)

- The operation of the priority encoder is such that:
- If two or more inputs are equal to $\mathbf{1}$ at the same time, the
input in the highest-numbered position will take precedence.
- A valid output indicator, designated by \mathbf{V}, is set to 1 only when inputs one or more are equal

Example: 4-to-2 Priority Encoder Truth Table

Inputs				Outputs		
D_{1}	D	D.	D	$\mathrm{A}_{\text {, }}$	A_{3}	v
0	,	0	0	X	X	0
0		0	(1)	0	0	1
0	年	(1)	X	0	1	1
${ }^{\circ}$	(1)	,	x	1	0	1
(1)	-	X	X	1	1	1

Example: 4-to-2 Priority Encoder Logic Diagram

Priority Encoders

x 0	x 1	x 2	x 3	x 4	x 5	x 6	x 7	z 2	z 1	z 0	V
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1
X	1	0	0	0	0	0	0	0	0	1	1
X	X	1	0	0	0	0	0	0	1	0	1
X	X	X	1	0	0	0	0	0	1	1	1
X	X	X	X	1	0	0	0	1	0	0	1
X	X	X	X	X	1	0	0	1	0	1	1
X	X	X	X	X	X	1	0	1	1	0	1
X	X	X	X	X	X	X	1	1	1	1	1

'148. 'LS 148

TYPICAL APPLICATION DATA 1G-LINE data (active Low

A multiplexer/demultiplexer arrangement for information transmission

