

An *n*-to-2*n*-line decoder symbol

Dept. of Computer Science and Engineering University of Rajshahi www.ru.ac.bd

Dr. Shamim Ahmad

2-to-4 Decoder

Decoder with enable: 2-to-4

Implementing a Binary Adder Using a Decoder

 $f1(x2,x1,x0) = \Pi M(0,1,3,5)$ $f2(x2,x1,x0) = \Pi M(1,3,6,7)$ (*a*) Using output or-gates. (*b*) Using output nor-gates.

 $f1(x2,x1,x0) = \Pi M(0,3,5)$ and $f2(x2,x1,x0) = \Pi M(2,3,4)$

X0.

XI

 $x_2 -$

with a 3-to-8-line decoder and two and-gates

A decoder realization of $f1(x2,x1,x0) = \Sigma m(0,2,6,7)$ and $f2(x2,x1,x0) = \Sigma m(3,5,6,7)$ (a) Using output and-gates. (b) Using output nand-gates.

And-gate 2-to-4-line decoder with an enable input. (a) Logic diagram (b) Compressed truth table

Nand-gate 2-to-4-line decoder with an enable input (a) Logic diagram (b) Compressed truth table. (c) Symbol.

A 2n-to-1-line Multiplexer symbol

A 4-to-1-line multiplexer. (a) Logic diagram (b) Compressed truth table. (c) Symbol

ſ	E	S_1	S ₂	f
Ī	0	х	x	0
	1	0	0	I ₀
	1	0	1	I_1
	1	1	0	I_2
	1	1	1	I ₃

A Multiplexer tree to form a 16-to-1-line Multiplexer

A general realization of a 3-variable Boolean function using a 4-to-1-line multiplexer.

Obtaining multiplexer realizations using Karnaugh maps. (a) Cell groupings corresponding to the data line functions. (b) Karnaugh maps for the *Ii* subfunctions

Using Karnaugh maps to obtain multiplexer realizations under various assignments to the select inputs.

(a) Applying input variables y and z to the S1 and S0 select lines. (b) Applying input variables x and y to the S0 and S1 select lines.

Alternative realizations of $f(x,y,z) = \Sigma m(0,2,3,5)$. (a) Applying input variables y and z to the S1 and S0 select lines. (b) Applying input variables x and y to the S0 and S1 select lines.

A selectline assignment and corresponding data line functions for a multiplexer realization of a four-variable function.

S₀ 8-to-1 MUX t I_0 yz I_1 00 01 11 10 1, I_3 0 00 0 I_4 15 $S_2S_1 \xrightarrow{01}_{w x} S_1$ 0 I_6 I-0 1 0 S 10 0 0 0 (*a*) (b)

Realizations of $f(w,x,y,z) = \Sigma m(0,1,5,6,7,9,12,15)$

(a) Karnaugh map. (b) Multiplexer realization.

Using a four-variable Karnaugh map to obtain a Boolean function realization with a 4-to-1-line multiplexer.

Order Number 54151ADMQB, 54151AFMQB, DM54151AJ, DM54151AW or DM74151AN See NS Package Number J16A, N16E or W16A

Demultiplexer.

Encoders

Encoder Example

· Example: 8-to-3 binary encoder (octal-to-binary)

An 8-to-3-line encoder.

Encoder Example (cont.)

4-to-2 Priority Encoder (cont.)

• The operation of the priority encoder is such that:

- If two or more inputs are equal to 1 at the same time, the

input in the **highest-numbered** position will take precedence.

• A *valid output indicator*, designated by V, is set to 1 only when **inputs one or more** are equal

Example: 4-to-2 Priority Encoder Truth Table

Inputs				Outputs			
D3	\mathbf{D}_2	\mathbf{D}_1	\mathbf{D}_{0}	А,	Aa	v	
0	0	0	0	х	х	0	
0	0	0		0	0	1	
)	-0		X	0	1	1	
0		X	X	1	0	1	
\mathbf{D}	X	x	X	1	1	1	

Example: 4-to-2 Priority Encoder K-Maps

Example: 4-to-2 Priority Encoder Logic Diagram

Priority Encoders

	-	-	-		-	_		-		-	-
x0	x1	x2	x3	x4	x5	xб	x7	z2	z1	z0	V
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1
Х	1	0	0	0	0	0	0	0	0	1	1
Х	Х	1	0	0	0	0	0	0	1	0	1
Х	X	X	1	0	0	0	0	0	1	1	1
Х	Х	X	Х	1	0	0	0	1	0	0	1
Х	Χ	X	Х	Х	1	0	0	1	0	1	1
Х	Х	X	Х	Х	Χ	1	0	1	1	0	1
Χ	Х	X	Х	Х	Х	Х	1	1	1	1	1

'148. 'LS148

4	h	U_{16}	Vcc
5 🗌	2	15] E0
6	3	14	GS
70	4	13	3
EL	ļs	12	2
A2 [6	11,	1
A1 C	17	10	0
GND []в	9	

A multiplexer/demultiplexer arrangement for information transmission

